ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the discovery of 49 new photometrically classified T dwarfs from the combination of large infrared and optical surveys combined with follow-up TNG photometry. We used multi-band infrared and optical photometry from the UKIRT and Sloan Digi tal Sky Surveys to identify possible brown dwarf candidates, which were then confirmed using methane filter photometry. We have defined a new photometric conversion between CH4s - CH4l colour and spectral type for T4 to T8 brown dwarfs based on a part of the sample that has been followed up using methane photometry and spectroscopy. Using methane differential photometry as a proxy for spectral type for T dwarfs has proved to be a very efficient technique. Of a subset of 45 methane selected brown dwarfs that were observed spectroscopically, 100% were confirmed as T dwarfs. Future deep imaging surveys will produce large samples of faint brown dwarf candidates, for which spectroscopy will not be feasible. When broad wavelength coverage is unavailable, methane imaging offers a means to efficiently classify candidates from such surveys using just a pair of near-infrared images.
We report the discovery of 76 new T dwarfs from the UKIDSS Large Area Survey (LAS). Near-infrared broad and narrow-band photometry and spectroscopy are presented for the new objects, along with WISE and warm-Spitzer photometry. Proper motions for 128 UKIDSS T dwarfs are presented from a new two epoch LAS proper motion catalogue. We use these motions to identify two new benchmark systems: LHS 6176AB, a T8+M4 pair and HD118865AB, a T5.5+F8 pair. Using age constraints from the primaries and evolutionary models to constrain the radii we have estimated their physical properties from their bolometric luminosity. We compare the colours and properties of known benchmark T dwarfs to the latest model atmospheres and draw two principal conclusions. Firstly, it appears that the H - [4.5] and J - W2 colours are more sensitive to metallicity than has previously been recognised, such that differences in metallicity may dominate over differences in Teff when considering relative properties of cool objects using these colours. Secondly, the previously noted apparent dominance of young objects in the late-T dwarf sample is no longer apparent when using the new model grids and the expanded sample of late-T dwarfs and benchmarks. This is supported by the apparently similar distribution of late-T dwarfs and earlier-type T dwarfs on reduced proper motion diagrams that we present. Finally, we present updated space densities for the late-T dwarfs, and compare our values to simulation predictions and those from WISE.
We report the discovery of 47 new T dwarfs in the Fourth Data Release (DR4) from the Large Area Survey (LAS) of the UKIRT Infrared Deep Sky Survey with spectral types ranging from T0 to T8.5. These bring the total sample of LAS T dwarfs to 80 as of D R4. In assigning spectral types to our objects we have identified 8 new spectrally peculiar objects, and divide 7 of them into two classes. H2O-H-early have a H2O-H index that differs with the H2O-J index by at least 2 sub-types. CH4-J-early have a CH4-J index that disagrees with the H20-J index by at least 2 subtypes. We have ruled out binarity as a sole explanation for both types of peculiarity, and suggest that they may represent hitherto unrecognised tracers of composition and/or gravity. Clear trends in z(AB)-J and Y-J are apparent for our sample, consistent with weakening absorption in the red wing of the KI line at 0.77microns with decreasing effective temperature. We have used our sample to estimate space densities for T6-T9 dwarfs. By comparing our sample to Monte-Carlo simulations of field T dwarfs for various mass functions of the form phi(M) propto M^-alpha, we have placed weak constraints on the form of the field mass function. Our analysis suggests that the substellar mass function is declining at lower masses, with negative values of alpha preferred. This is at odds with results for young clusters that have been generally found to have alpha > 0.
We report the discovery of three very late T dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS) Third Data Release: ULAS J101721.40+011817.9 (ULAS1017), ULAS J123828.51+095351.3 (ULAS1238) and ULAS J133553.45+113005.2 (ULAS1335).We detail optical and near-infrared photometry for all three sources, and mid-infrared photometry for ULAS1335. We use near-infrared spectra of each source to assign spectral types T8p (ULAS1017), T8.5 (ULAS1228) and T9 (ULAS1335) to these objects. We estimate that ULAS1017 has 750 < Teff < 850K, and 5.0 < log g < 5.5, assuming solar metallicity, an age of 1.6-15 Gyr, a mass of 33-70 MJ and lies at a distance of 31-54 pc. We extend the unified scheme of Burgasser et al. (2006) to the type T9 and suggest the inclusion of the WJ index to replace the now saturated J-band indices. ULAS1335 is the same spectral type as ULAS J003402.77-005206.7 and CFBDS J005910.90-011401.3. Comparison of model spectra with that of ULAS1335 suggest a temperature below 600K. We find ULAS1335 to be extremely red in near to mid-infrared colours, with H-[4.49]=4.34+/-0.04. This is the reddest near to mid-infrared colour yet observed for a T dwarf, which supports Teff < 600K, and we estimate Teff ~550-600K for ULAS1335. We estimate that ULAS1335 has an age of 0.6-5.3 Gyr, a mass of 15-31 MJ and lies at a distance of 8-12 pc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا