ترغب بنشر مسار تعليمي؟ اضغط هنا

We present genuine bulk Ir 5d jeff states of layered perovskite iridates obtained by hard-x-ray photoemission spectroscopy (HAXPES) with s- and p-polarized lights. HAXPES spectra of Sr2IrO4 and Ba2IrO4 are well reproduced by the quasi-particle densit ies of states calculated by the local density approximation with dynamical mean-field theory (LDA+DMFT). It is demonstrated that the insulating nature of the iridates is triggered by antiferromagnetic correlation (Slater type) combined with electron correlation (Mott type). The extremely-low-energy bulk-sensitive photoemission spectroscopy reveals bad metallic states in the paramagnetic phase of the iridates, suggesting strongly renormalized metallic states above the Neel temperature as predicted by the LDA+DMFT.
We have investigated the electronic structures of recently discovered superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy with high bulk sensitivity. The large Fe 3d spectral weight is located in the vicinity of the Fermi leve l (EF), which is demonstrated to be a coherent quasi-particle peak. Compared with the results of the band structure calculation with local-density approximation, Fe 3d band narrowing and the energy shift of the band toward EF are found, suggesting an importance of the electron correlation effect in FeSe. The self energy correction provides the larger mass enhancement value (Z^-1=3.6) than in Fe-As superconductors and enables us to separate a incoherent part from the spectrum. These features are quite consistent with the results of recent dynamical mean-field calculations, in which the incoherent part is attributed to the lower Hubbard band.
232 - A. Yamasaki , S. Imada , K. Takase 2009
We have investigated the electronic structures of newly discovered superconductor FeSe1-x by bulk-sensitive photoemission spectroscopy (PES). The large Fe 3d spectral weight is located in the vicinity of the Fermi level (EF) and it decreases steeply toward EF . Compared with results of band structure calculations, narrowing the Fe 3d band width and the energy shift of the band toward EF are found, suggesting a mass enhancement due to the weak electron correlation effect. Meanwhile, Fe 2p core-level PES reveals a strong itinerant character of Fe 3d electrons. These features are very similar to those in other Fe-based high-Tc superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا