ﻻ يوجد ملخص باللغة العربية
We have investigated the electronic structures of newly discovered superconductor FeSe1-x by bulk-sensitive photoemission spectroscopy (PES). The large Fe 3d spectral weight is located in the vicinity of the Fermi level (EF) and it decreases steeply toward EF . Compared with results of band structure calculations, narrowing the Fe 3d band width and the energy shift of the band toward EF are found, suggesting a mass enhancement due to the weak electron correlation effect. Meanwhile, Fe 2p core-level PES reveals a strong itinerant character of Fe 3d electrons. These features are very similar to those in other Fe-based high-Tc superconductors.
We have investigated the electronic structures of recently discovered superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy with high bulk sensitivity. The large Fe 3d spectral weight is located in the vicinity of the Fermi leve
We have performed soft x-ray and ultrahigh-resolution laser-excited photoemission measurements on tetragonal FeSe, which was recently identified as a superconductor. Energy dependent study of valence band is compared to band structure calculations an
We have performed x-ray photoemission spectroscopy on the system of noncentrosymmetric superconductor, Li$_2$(Pd$_x$Pt$_{1-x}$3)B. For Li$_2$Pt$_3$B, we found 2 major peaks with 2 other weak components, and the band calculations were in agreement wit
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac
Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru; X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f resonance photoemission. A very strong spectral intensity is observed just below the Fermi level in