ترغب بنشر مسار تعليمي؟ اضغط هنا

The detection of the primordial $B$-mode spectrum of the polarized cosmic microwave background (CMB) signal may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic errors. Interferometry proves to be a promising approach for overcoming such a challenge. In this paper we present a complete simulation pipeline of interferometric observations of CMB polarization, including systematic errors. We employ two different methods for obtaining the power spectra from mock data produced by simulated observations: the maximum likelihood method and the method of Gibbs sampling. We show that the results from both methods are consistent with each other, as well as, within a factor of 6, with analytical estimates. Several categories of systematic errors are considered: instrumental errors, consisting of antenna gain and antenna coupling errors, and beam errors, consisting of antenna pointing errors, beam cross-polarization and beam shape (and size) errors. In order to recover the tensor-to-scalar ratio, $r$, within a 10% tolerance level, which ensures the experiment is sensitive enough to detect the $B$-signal at $r=0.01$ in the multipole range $28 < ell < 384$, we find that, for a QUBIC-like experiment, Gaussian-distributed systematic errors must be controlled with precisions of $|g_{rms}| = 0.1$ for antenna gain, $|epsilon_{rms}| = 5 times 10^{-4}$ for antenna coupling, $delta_{rms} approx 0.7^circ$ for pointing, $zeta_{rms} approx 0.7^circ$ for beam shape, and $mu_{rms} = 5 times 10^{-4}$ for beam cross-polarization.
Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having mor e manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an interferometric observation on a finite patch with incomplete uv-plane coverage, a finite beam size and a realistic noise model. With a computational complexity of O(n^{3/2}), n being the data size, Gibbs sampling provides an efficient method for analyzing upcoming cosmology observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا