ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nea rest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.
121 - A. Riera 2010
We analyze the proposal of achieving a Mott state of Laughlin wave functions in an optical lattice [M. Popp {it et al.}, Phys. Rev. A 70, 053612 (2004)] and study the consequences of considering the anharmonic corrections to each single site potentia l expansion that were not taken into account until now. Our result is that, although the anharmonic correction reduces the maximum frequency at which the system can rotate before the atoms escape from each site (centrifugal limit), the Laughlin state can still be achieved for a small number of particles and a realistic value of the laser intensity.
89 - J. I. Latorre , A. Riera 2009
We review some of the recent progress on the study of entropy of entanglement in many-body quantum systems. Emphasis is placed on the scaling properties of entropy for one-dimensional multi-partite models at quantum phase transitions and, more genera lly, on the concept of area law. We also briefly describe the relation between entanglement and the presence of impurities, the idea of particle entanglement, the evolution of entanglement along renormalization group trajectories, the dynamical evolution of entanglement and the fate of entanglement along a quantum computation.
We construct a quantum algorithm that creates the Laughlin state for an arbitrary number of particles $n$ in the case of filling fraction one. This quantum circuit is efficient since it only uses $n(n-1)/2$ local qudit gates and its depth scales as $ 2n-3$. We further prove the optimality of the circuit using permutation theory arguments and we compute exactly how entanglement develops along the action of each gate. Finally, we discuss its experimental feasibility decomposing the qudits and the gates in terms of qubits and two qubit-gates as well as the generalization to arbitrary filling fraction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا