ترغب بنشر مسار تعليمي؟ اضغط هنا

When facing a task of balancing a dynamic system near an unstable equilibrium, humans often adopt intermittent control strategy: instead of continuously controlling the system, they repeatedly switch the control on and off. Paradigmatic example of su ch a task is stick balancing. Despite the simplicity of the task itself, the complexity of human intermittent control dynamics in stick balancing still puzzles researchers in motor control. Here we attempt to model one of the key mechanisms of human intermittent control, control activation, using as an example the task of overdamped stick balancing. In so doing, we focus on the concept of noise-driven activation, a more general alternative to the conventional threshold-driven activation. We describe control activation as a random walk in an energy potential, which changes in response to the state of the controlled system. By way of numerical simulations, we show that the developed model captures the core properties of human control activation observed previously in the experiments on overdamped stick balancing. Our results demonstrate that the double-well potential model provides tractable mathematical description of human control activation at least in the considered task, and suggest that the adopted approach can potentially aid in understanding human intermittent control in more complex processes.
Learning and adaptation play great role in emergent socio-economic phenomena. Complex dynamics has been previously found in the systems of multiple learning agents interacting via a simple game. Meanwhile, the single agent adaptation is considered tr ivially stable. We advocate the idea that adopting a more complex model of the individual behavior may result in a more diverse spectrum of macro-level behaviors. We develop an adaptation model based on the reinforcement learning framework extended by an additional processing channel. We scrutiny the dynamics of the single agent adapting to the unknown environment; the agent is biased by novelty seeking, the intrinsic inclination for exploration. We demonstrate that the behavior of the novelty-seeking agent may be inherently unstable. One of the surprising results is that under certain conditions the increase of the novelty-seeking level may cause the agent to switch from the non-rational to the strictly rational behavior. Our results give evidence to the hypothesis that the intrinsic motives of agents should be paid no less attention than the extrinsic ones in the models of complex socio-economic systems.
Humans are often incapable of precisely identifying and implementing the desired control strategy in controlling unstable dynamical systems. That is, the operator of a dynamical system treats the current control effort as acceptable even if it deviat es slightly from the desired value, and starts correcting the actions only when the deviation has become evident. We argue that the standard Newtonian approach does not allow to model such behavior. Instead, the physical phase space of a controlled system should be extended with an independent phase variable characterizing the operator motivated actions. The proposed approach is illustrated via a simple non-Newtonian model capturing the operators fuzzy perception of their own actions. The properties of the model are investigated analytically and numerically; the results confirm that the extended phase space may aid in capturing the intricate dynamical properties of human-controlled systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا