ترغب بنشر مسار تعليمي؟ اضغط هنا

An effective model for QED with the addition of a nonminimal coupling with a chiral character is investigated. This term, which is proportional to a fixed 4-vector $b_mu$, violates Lorentz symmetry and may originate a CPT-even Lorentz breaking term i n the photon sector. It is shown that this Lorentz breaking CPT-even term is generated and that,in addition, the chiral nonminimal coupling requires this term is present from the beginning. The nonrenormalizability of the model is invoked in the discussion of this fact and the result is confronted with the one from a model with a Lorentz-violating nonminimal coupling without chirality.
We establish a systematic way to calculate multiloop amplitudes of infrared safe massless models with Implicit Regularization (IR), with a direct cancelation of the fictitious mass introduced by the procedure. The ultraviolet content of such amplitud es have a simple structure and its separation permits the identification of all the potential symmetry violating terms, the surface terms. Moreover, we develop a technique for the calculation of an important kind of finite multiloop integral which seems particularly convenient to use Feynman parametrization. Finally, we discuss the Implicit Regularization of infrared divergent amplitudes, showing with an example how it can be dealt with an analogous procedure in the coordinate space.
The radiative induction of the CPT and Lorentz violating Chern-Simons (CS) term is reassessed. The massless and massive models are studied. Special attention is given to the preservation of gauge symmetry at higher orders in the background vector $b_ mu$ when radiative corrections are considered. Both the study of the odd and even parity sectors of the complete vacuum polarization tensor at one-loop order and a non-perturbative analysis show that this symmetry must be preserved by the quantum corrections. As a complement we obtain that transversality of the polarization tensor does not fix the value of the coefficient of the induced CS term.
We extend a constrained version of Implicit Regularization (CIR) beyond one loop order for gauge field theories. In this framework, the ultraviolet content of the model is displayed in terms of momentum loop integrals order by order in perturbation t heory for any Feynman diagram, while the Ward-Slavnov-Taylor identities are controlled by finite surface terms. To illustrate, we apply CIR to massless abelian Gauge Field Theories (scalar and spinorial QED) to two loop order and calculate the two-loop beta-function of the spinorial QED.
Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rath er distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا