ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the wave breaking mechanism for the weakly dispersive defocusing nonlinear Schroedinger (NLS) equation with a constant phase dark initial datum that contains a vacuum point at the origin. We prove by means of the exact solution to the initia l value problem that, in the dispersionless limit, the vacuum point is preserved by the dynamics until breaking occurs at a finite critical time. In particular, both Riemann invariants experience a simultaneous breaking at the origin. Although the initial vacuum point is no longer preserved in the presence of a finite dispersion, the critical behaviour manifests itself through an abrupt transition occurring around the breaking time.
We derive a class of equations of state for a multi-phase thermodynamic system associated with a finite set of order parameters that satisfy an integrable system of hydrodynamic type. As particular examples, we discuss one-phase systems such as the v an der Waals gas and the effective molecular field model. The case of N-phase systems is also discussed in detail in connection with entropies depending on the order parameter according to Tsallis composition rule.
225 - Antonio Moro 2013
A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest mod el that predicts the occurrence of a critical point associated with the gas-liquid phase transition. Nevertheless, below the critical temperature, theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts.
We show that under rather general assumptions on the form of the entropy function, the energy balance equation for a system in thermodynamic equilibrium is equivalent to a set of nonlinear equations of hydrodynamic type. This set of equations is inte grable via the method of the characteristics and it provides the equation of state for the gas. The shock wave catastrophe set identifies the phase transition. A family of explicitly solvable models of non-hydrodynamic type such as the classical plasma and the ideal Bose gas are also discussed.
134 - Antonio Moro 2009
Vortices are screw phase dislocations associated with helicoidal wave-fronts. In nonlinear optics, vortices arise as singular solutions to the phase-intensity equations of geometric optics. They exist for a general class of nonlinear response functio ns. In this sense, vortices possess a universal character. Analysis of geometric optics equations on the hodograph plane leads to deformed vortex type solutions that are sensitive to the form of the nonlinearity. The case of a Kerr type nonlinear response is discussed as a specific example.
We classify integrable third order equations in 2+1 dimensions which generalize the examples of Kadomtsev-Petviashvili, Veselov-Novikov and Harry Dym equations. Our approach is based on the observation that dispersionless limits of integrable systems in 2+1 dimensions possess infinitely many multi-phase solutions coming from the so-called hydrodynamic reductions. %Conversely, the requirement of the existence of hydrodynamic reductions proves to be an efficient classification criterion. In this paper we adopt a novel perturbative approach to the classification problem. Based on the method of hydrodynamic reductions, we first classify integrable quasilinear systems which may (potentially) occur as dispersionless limits of soliton equations in 2+1 dimensions. To reconstruct dispersive deformations, we require that all hydrodynamic reductions of the dispersionless limit are inherited by the corresponding dispersive counterpart. This procedure leads to a complete list of integrable third order equations, some of which are apparently new.
New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $alpha$ particles. The energ y and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the $alpha$ particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا