ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrable multi-phase thermodynamic systems and Tsallis composition rule

60   0   0.0 ( 0 )
 نشر من قبل Antonio Moro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a class of equations of state for a multi-phase thermodynamic system associated with a finite set of order parameters that satisfy an integrable system of hydrodynamic type. As particular examples, we discuss one-phase systems such as the van der Waals gas and the effective molecular field model. The case of N-phase systems is also discussed in detail in connection with entropies depending on the order parameter according to Tsallis composition rule.

قيم البحث

اقرأ أيضاً

In the first part of the paper, we classify linear integrable (multi-dimensionally consistent) quad-equations on bipartite isoradial quad-graphs in $mathbb C$, enjoying natural symmetries and the property that the restriction of their solutions to th e black vertices satisfies a Laplace type equation. The classification reduces to solving a functional equation. Under certain restriction, we give a complete solution of the functional equation, which is expressed in terms of elliptic functions. We find two real analytic reductions, corresponding to the cases when the underlying complex torus is of a rectangular type or of a rhombic type. The solution corresponding to the rectangular type was previously found by Boutillier, de Tili`ere and Raschel. Using the multi-dimensional consistency, we construct the discrete exponential function, which serves as a basis of solutions of the quad-equation. In the second part of the paper, we focus on the integrability of discrete linear variational problems. We consider discrete pluri-harmonic functions, corresponding to a discrete 2-form with a quadratic dependence on the fields at black vertices only. In an important particular case, we show that the problem reduces to a two-field generalization of the classical star-triangle map. We prove the integrability of this novel 3D system by showing its multi-dimensional consistency. The Laplacians from the first part come as a special solution of the two-field star-triangle map.
We consider the generic quadratic first integral (QFI) of the form $I=K_{ab}(t,q)dot{q}^{a}dot{q}^{b}+K_{a}(t,q)dot{q}^{a}+K(t,q)$ and require the condition $dI/dt=0$. The latter results in a system of partial differential equations which involve the tensors $K_{ab}(t,q)$, $K_{a}(t,q)$, $K(t,q)$ and the dynamical quantities of the dynamical equations. These equations divide in two sets. The first set involves only geometric quantities of the configuration space and the second set contains the interaction of these quantities with the dynamical fields. A theorem is presented which provides a systematic solution of the system of equations in terms of the collineations of the kinetic metric in the configuration space. This solution being geometric and covariant, applies to higher dimensions and curved spaces. The results are applied to the simple but interesting case of two-dimensional (2d) autonomous conservative Newtonian potentials. It is found that there are two classes of 2d integrable potentials and that superintegrable potentials exist in both classes. We recover most main previous results, which have been obtained by various methods, in a single and systematic way.
Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)-dimensional case, the corresponding system can be extended to 2x2 matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.
The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in various concrete examples of finite-dimensional integrable systems. The goal of the present paper is to give a brief overview of monodromy and discuss some of its generalisations. In particular, we will discuss the monodromy around a focus-focus singularity and the notions of quantum, fractional and scattering monodromy. The exposition will be complemented with a number of examples and open problems.
We consider the system of particles with equal charges and nearest neighbour Coulomb interaction on the interval. We study local properties of this system, in particular the distribution of distances between neighbouring charges. For zero temperature case there is sufficiently complete picture and we give a short review. For Gibbs distribution the situation is more difficult and we present two related results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا