ترغب بنشر مسار تعليمي؟ اضغط هنا

In the present paper, we compare the predictions of two well known mechanisms considered able to solve the cusp/core problem (a. supernova feedback; b. baryonic clumps-DM interaction) by comparing their theoretical predictions to recent observations of the inner slopes of galaxies with masses ranging from dSphs to normal spirals. We compare the $alpha$-$V_{rm rot}$ and the $alpha$-$M_{ast}$ relationships, predicted by the two models with high resolution data coming from citep{Adams2014,Simon2005}, LITTLE THINGS citep{Oh2015}, THINGS dwarves citep{Oh2011a,Oh2011b}, THINGS spirals citep{Oh2015}, Sculptor, Fornax and the Milky Way. The comparison of the theoretical predictions with the complete set of data shows that the two models perform similarly, while when we restrict the analysis to a smaller subsample of higher quality, we show that the method presented in this paper (baryonic clumps-DM interaction) performs better than the one based on supernova feedback. We also show that, contrarily to the first model prediction, dSphs of small mass could have cored profiles. This means that observations of cored inner profiles in dSphs having a stellar mass $<10^6 M_{odot}$ not necessarily imply problems for the $Lambda$CDM model.
71 - A. Del Popolo 2012
In this paper, in the framework of the secondary infall model, the correlation between the central surface density and the halo core radius of galaxy, and cluster of galaxies, dark matter haloes was analyzed, this having recently been studied on a wi de range of scales. We used Del Popolo (2009) secondary infall model taking into account ordered and random angular momentum, dynamical friction, and dark matter (DM) adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that $r_ast$ (the halo characteristic radius) is not an universal quantity as claimed by Donato et al. (2009) and Gentile et al. (2009). On the contrary, we find a correlation with the halo mass $M_{200}$ in agreement with Cardone & Tortora (2010), Boyarsky at al. (2009) and Napolitano et al. (2010), but with a significantly smaller scatter, namely $0.16 pm 0.05$. We also consider the baryon column density finding this latter being indeed a constant for low mass systems such as dwarfs, but correlating with mass with a slope $alpha= 0.18 pm 0.05$. In the case of the surface density of dark matter for a system composed only of dark matter, as in dissipationless simulations, we get $alpha=0.20 pm 0.05$. These results leave little room for the recently claimed universality of (dark and stellar) column density.
76 - A. Del Popolo 2012
We study, for the first time, how shear and angular momentum modify typical parameters of the spherical collapse model, in dark energy dominated universes. In particular, we study the linear density threshold for collapse $delta_mathrm{c}$ and the vi rial overdensity $Delta_mathrm{V}$, for several dark-energy models and its influence on the cumulative mass function. The equations of the spherical collapse are those obtained in Pace et al. (2010), who used the fully nonlinear differential equation for the evolution of the density contrast derived from Newtonian hydrodynamics, and assumed that dark energy is present only at the background level. With the introduction of the shear and rotation terms, the parameters of the spherical collapse model are now mass-dependant. The results of the paper show, as expected, that the new terms considered in the spherical collapse model oppose the collapse of perturbations on galactic scale giving rise to higher values of the linear overdensity parameter with respect to the non-rotating case. We find a similar effect also for the virial overdensity parameter. For what concerns the mass function, we find that its high mass tail is suppressed, while the low mass tail is slightly affected except in some cases, e.g. the Chaplygin gas case.
The present paper extends to clusters of galaxies the study of Del Popolo (2012), concerning how the baryon-dark matter (DM) interplay shapes the density profile of dwarf galaxies. Cluster density profiles are determined taking into account dynamical friction, random and ordered angular momentum and the response of dark matter halos to condensation of baryons. We find that halos containing only DM are characterized by Einastos profiles, and that the profile flattens with increasing content of baryons, and increasing values of random angular momentum. The analytical results obtained in the first part of the paper were applied to well studied clusters whose inner profiles have slopes flatter than NFW predictions (A611, A383) or are characterized by profiles in agreement with the NFW model (MACS J1423.8+2404, RXJ1133). By using independently-measured baryonic fraction, a typical spin parameter value $lambda simeq 0.03$, and adjusting the random angular momentum, we re-obtain the mass and density profiles of the quoted clusters. Finally, we show that the baryonic mass inside $simeq 10$ kpc, $M_{b,in}$ is correlated with the total mass of the clusters, %finding a correlation among the two quantities, as $M_{b,in} propto M_{500}^{0.4}$.
73 - A. Del Popolo 2010
We show how to improve constraints on Omega_m, sigma_8, and the dark-energy equation-of-state parameter, w, obtained by Mantz et al. (2008) from measurements of the X-ray luminosity function of galaxy clusters, namely MACS, the local BCS and the REFL EX galaxy cluster samples with luminosities L> 3 times 10^{44} erg/s in the 0.1--2.4 keV band. To this aim, we use Tinker et al. (2008) mass function instead of Jenkins et al. (2001) and the M-L relationship obtained from Del Popolo (2002) and Del Popolo et al. (2005). Using the same methods and priors of Mantz et al. (2008), we find, for a Lambda$CDM universe, Omega_m=0.28^{+0.05}_{-0.04} and sigma_8=0.78^{+0.04}_{-0.05}$ while the result of Mantz et al. (2008) gives less tight constraints $Omega_m=0.28^{+0.11}_{-0.07}$ and sigma_8=0.78^{+0.11}_{-0.13}. In the case of a wCDM model, we find Omega_m=0.27^{+0.07}_{-0.06}, $sigma_8=0.81^{+0.05}_{-0.06}$ and $w=-1.3^{+0.3}_{-0.4}$, while in Mantz et al. (2008) they are again less tight Omega_m=0.24^{+0.15}_{-0.07}, sigma_8=0.85^{+0.13}_{-0.20} and w=-1.4^{+0.4}_{-0.7}. Combining the XLF analysis with the f_{gas}+CMB+SNIa data set results in the constraint Omega_m=0.269 pm 0.012, sigma_8=0.81 pm 0.021 and w=-1.02 pm 0.04, to be compared with Mantz et al. (2008), Omega_m=0.269 pm 0.016, sigma_8=0.82 pm 0.03 and w=-1.02 pm 0.06. The tightness of the last constraints obtained by Mantz et al. (2008), are fundamentally due to the tightness of the $f_{gas}$+CMB+SNIa constraints and not to their XLF analysis. Our findings, consistent with w=-1, lend additional support to the cosmological-constant model.
276 - A. Del Popolo 2009
In the present paper, we improve the Extended Secondary Infall Model (ESIM) of Williams et al. (2004) to obtain further insights on the cusp/core problem. The model takes into account the effect of ordered and random angular momentum, dynamical frict ion and baryon adiabatic contraction in order to obtain a secondary infall model more close to the collapse reality. The model is applied to structures on galactic scales (normal and dwarf spiral galaxies) and on cluster of galaxies scales. The results obtained suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of adiabatic contraction eliminating the cusp. The NFW profile can be reobtained, in our model only if the system is constituted just by dark matter and the magnitude of angular momentum and dynamical friction are reduced with respect to the values predicted by the model itself. The rotation curves of four LSB galaxies from de Blok & Bosma (2002) are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. On scales smaller than $simeq 10^{11} h^{-1} M_{odot}$ the slope $alpha simeq 0$ and on cluster scales we observe a similar evolution of the dark matter density profile but in this case the density profile slope flattens to $alpha simeq 0.6$ for a cluster of $simeq 10^{14} h^{-1} M_{odot}$. The total mass profile, differently from that of dark matter, shows a central cusp well fitted by a NFW model.
In this paper I show how the statistics of the gravitational field is changed when the system is characterized by a non-uniform distribution of particles. I show how the distribution functions W(dF/dt) giving the joint probability that a test particl e is subject to a force F and an associated rate of change of F given by dF/dt, are modified by inhomogeneity. Then I calculate the first moment of dF/dt to study the effects of inhomogenity on dynamical friction. Finally I test, by N-Body simulations, that the theoretical W(F) and dF/dt describes correctly the experimental data and I find that the stochastic force distribution obtained for the evolved system is in good agreement with theory. Moreover, I find that in an inhomogeneous background the friction force is actually enhanced relative to the homogeneous case.
This paper provides a review of the variants of dark matter which are thought to be fundamental components of the universe and their role in origin and evolution of structures and some new original results concerning improvements to the spherical col lapse model. In particular, I show how the spherical collapse model is modified when we take into account dynamical friction and tidal torques.
I study the joint effect of dynamical friction, tidal torques and cosmological constant on clusters of galaxies formation I show that within high-density environments, such as rich clusters of galaxies, both dynamical friction and tidal torques slows down the collapse of low-? peaks producing an observable variation in the time of collapse of the perturbation and, as a consequence, a reduction in the mass bound to the collapsed perturbation Moreover, the delay of the collapse produces a tendency for less dense regions to accrete less mass, with respect to a classical spherical model, inducing a biasing of over-dense regions toward higher mass I show how the threshold of collapse is modified if dynamical friction, tidal torques and a non-zero cosmological constant are taken into account and I use the Extended Press Schecter (EPS) approach to calculate the effects on the mass function Then, I compare the numerical mass function given in Reed et al (2003) with the theoretical mass function obtained in the present paper I show that the barrier obtained in the present paper gives rise to a better description of the mass function evolution with respect to other previous models (Sheth & Tormen 1999, MNRAS, 308, 119 (hereafter ST); Sheth & Tormen 2002, MNRAS, 329, 61 (hereafter ST1))
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا