ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Density profile slope of Clusters of Galaxies

91   0   0.0 ( 0 )
 نشر من قبل Antonino Del Popolo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present paper extends to clusters of galaxies the study of Del Popolo (2012), concerning how the baryon-dark matter (DM) interplay shapes the density profile of dwarf galaxies. Cluster density profiles are determined taking into account dynamical friction, random and ordered angular momentum and the response of dark matter halos to condensation of baryons. We find that halos containing only DM are characterized by Einastos profiles, and that the profile flattens with increasing content of baryons, and increasing values of random angular momentum. The analytical results obtained in the first part of the paper were applied to well studied clusters whose inner profiles have slopes flatter than NFW predictions (A611, A383) or are characterized by profiles in agreement with the NFW model (MACS J1423.8+2404, RXJ1133). By using independently-measured baryonic fraction, a typical spin parameter value $lambda simeq 0.03$, and adjusting the random angular momentum, we re-obtain the mass and density profiles of the quoted clusters. Finally, we show that the baryonic mass inside $simeq 10$ kpc, $M_{b,in}$ is correlated with the total mass of the clusters, %finding a correlation among the two quantities, as $M_{b,in} propto M_{500}^{0.4}$.



قيم البحث

اقرأ أيضاً

78 - Qiuhan He , Hongyu Li , Ran Li 2019
We determine the inner density profiles of massive galaxy clusters (M$_{200}$ > $5 times 10^{14}$ M$_{odot}$) in the Cluster-EAGLE (C-EAGLE) hydrodynamic simulations, and investigate whether the dark matter density profiles can be correctly estimated from a combination of mock stellar kinematical and gravitational lensing data. From fitting mock stellar kinematics and lensing data generated from the simulations, we find that the inner density slopes of both the total and the dark matter mass distributions can be inferred reasonably well. We compare the density slopes of C-EAGLE clusters with those derived by Newman et al. for 7 massive galaxy clusters in the local Universe. We find that the asymptotic best-fit inner slopes of generalized NFW (gNFW) profiles, ${gamma}_{rm gNFW}$, of the dark matter haloes of the C-EAGLE clusters are significantly steeper than those inferred by Newman et al. However, the mean mass-weighted dark matter density slopes of the simulated clusters are in good agreement with the Newman et al. estimates. We also find that the estimate of ${gamma}_{rm gNFW}$ is very sensitive to the constraints from weak lensing measurements in the outer parts of the cluster and a bias can lead to an underestimate of ${gamma}_{rm gNFW}$.
241 - Simona Vegetti 2014
We consider three extensions of the Navarro, Frenk and White (NFW) profile and investigate the intrinsic degeneracies among the density profile parameters on the gravitational lensing effect of satellite galaxies on highly magnified Einstein rings. I n particular, we find that the gravitational imaging technique can be used to exclude specific regions of the considered parameter space, and therefore, models that predict a large number of satellites in those regions. By comparing the lensing degeneracy with the intrinsic density profile degeneracies, we show that theoretical predictions based on fits that are dominated by the density profile at larger radii may significantly over- or underestimate the number of satellites that are detectable with gravitational lensing. Finally, using the previously reported detection of a satellite in the gravitational lens system JVAS B1938+666 as an example, we derive for this detected satellite values of r_max and v_max that are, for each considered profile, consistent within 1sigma with the parameters found for the luminous dwarf satellites of the Milky Way and with a mass density slope gamma < 1.6. We also find that the mass of the satellite within the Einstein radius as measured using gravitational lensing is stable against assumptions on the substructure profile. In the future thanks to the increased angular resolution of very long baseline interferometry at radio wavelengths and of the E-ELT in the optical we will be able to set tighter constraints on the number of allowed substructure profiles.
118 - S. Ettori 2014
In galaxy clusters, the relations between observables in X-ray and millimeter wave bands and the total mass have normalizations, slopes and redshift evolutions that are simple to estimate in a self-similar scenario. We study these scaling relations a nd show that they can be efficiently expressed, in a more coherent picture, by fixing the normalizations and slopes to the self-similar predictions, and advocating, as responsible of the observed deviations, only three physical mass-dependent quantities: the gas clumpiness $C$, the gas mass fraction $f_g$ and the logarithmic slope of the thermal pressure profile $beta_P$. We use samples of the observed gas masses, temperature, luminosities, and Compton parameters in local clusters to constrain normalization and mass dependence of these 3 physical quantities, and measure: $C^{0.5} f_g = 0.110 (pm 0.002 pm 0.002) left( E_z M / 5 times 10^{14} M_{odot} right)^{0.198 (pm 0.025 pm 0.04)}$ and $beta_P = -d ln P/d ln r = 3.14 (pm 0.04 pm 0.02) left( E_z M / 5 times 10^{14} M_{odot} right)^{0.071 (pm 0.012 pm 0.004)}$, where both a statistical and systematic error (the latter mainly due to the cross-calibration uncertainties affecting the cxo and xmm results used in the present analysis) are quoted. The degeneracy between $C$ and $f_g$ is broken by using the estimates of the Compton parameters. Together with the self-similar predictions, these estimates on $C$, $f_g$ and $beta_P$ define an inter-correlated internally-consistent set of scaling relations that reproduces the mass estimates with the lowest residuals.
We investigate the evolution of the optical and near-infrared colour-magnitude relation in an homogeneous sample of massive clusters from z = 1 to the present epoch. By comparing deep Hubble Space Telescope ACS imaging of X-ray selected MACS survey c lusters at z = 0.5 to the similarly selected LARCS sample at z = 0.1 we find that the rest-frame d(U -V)/dV slope of the colour-magnitude relation evolves with redshift which we attribute to the build up of the red sequence over time. This rest frame slope evolution is not adequately reproduced by that predicted from semi-analytic models based on the Millennium Simulation despite a prescription for the build up of the red sequence by in-falling galaxies, strangulation. We observe no strong correlation between this slope and the cluster environment at a given redshift demonstrating that the observed evolution is not due to a secondary correlation. Also presented are near-infrared UKIRT WFCAM observations of the LARCS clusters which confirm and improve on the the result from Stott et al. (2007) finding that there has been a two-fold increase in faint MV > -20 galaxies on the red sequence since z = 0.5 to a significance of 5sigma.
We present atmospheric gas entropy profiles for 40 early type galaxies and 110 clusters spanning several decades of halo mass, atmospheric gas mass, radio jet power, and galaxy type. We show that within $sim 0.1R_{2500}$ the entropy profiles of low-m ass systems, including ellipticals, brightest cluster galaxies, and spiral galaxies, scale approximately as $Kpropto R^{2/3}$. Beyond $sim 0.1R_{2500}$ entropy profiles are slightly shallower than the $K propto R^{1.1}$ profile expected from gravitational collapse alone, indicating that heating by AGN feedback extends well beyond the central galaxy. We show that the $Kpropto R^{2/3}$ entropy profile shape indicates that thermally unstable cooling is balanced by heating where the inner cooling and free-fall timescales approach a constant ratio. Hot atmospheres of elliptical galaxies have a higher rate of heating per gas particle compared to central cluster galaxies. This excess heating may explain why some central cluster galaxies are forming stars while most early-type galaxies have experienced no significant star formation for billions of years. We show that the entropy profiles of six lenticular and spiral galaxies follow the $R^{2/3}$ form. The continuity between central galaxies in clusters, giant ellipticals, and spirals suggests perhaps that processes heating the atmospheres of elliptical and brightest cluster galaxies are also active in spiral galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا