ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we present a topological magnetic field investigation of seven two-ribbon flares in sigmoidal active regions observed with Hinode, STEREO, and SDO. We first derive the 3D coronal magnetic field structure of all regions using marginally unstable 3D coronal magnetic field models created with the flux rope insertion method. The unstable models have been shown to be a good model of the flaring magnetic field configurations. Regions are selected based on their pre-flare configurations along with the appearance and observational coverage of flare ribbons, and the model is constrained using pre-flare features observed in extreme ultraviolet and X-ray passbands. We perform a topology analysis of the models by computing the squashing factor, Q, in order to determine the locations of prominent quasi-separatrix layers (QSLs). QSLs from these maps are compared to flare ribbons at their full extents. We show that in all cases the straight segments of the two J-shaped ribbons are matched very well by the flux-rope-related QSLs, and the matches to the hooked segments are less consistent but still good for most cases. In addition, we show that these QSLs overlay ridges in the electric current density maps. This study is the largest sample of regions with QSLs derived from 3D coronal magnetic field models, and it shows that the magnetofrictional modeling technique that we employ gives a very good representation of flaring regions, with the power to predict flare ribbon locations in the event of a flare following the time of the model.
We present a new sample of M subdwarfs compiled from the 7th data release of the Sloan Digital Sky Survey. With 3517 new subdwarfs, this new sample significantly increases the number of spectroscopically confirmed low-mass subdwarfs. This catalog als o includes 905 extreme and 534 ultra sudwarfs. We present the entire catalog including observed and derived quantities, and template spectra created from co-added subdwarf spectra. We show color-color and reduced proper motion diagrams of the three metallicity classes, which are shown to separate from the disk dwarf population. The extreme and ultra subdwarfs are seen at larger values of reduced proper motion as expected for more dynamically heated populations. We determine 3D kinematics for all of the stars with proper motions. The color-magnitude diagrams show a clear separation of the three metallicity classes with the ultra and extreme subdwarfs being significantly closer to the main sequence than the ordinary subdwarfs. All subdwarfs lie below (fainter) and to the left (bluer) of the main sequence. Based on the average $(U,V,W)$ velocities and their dispersions, the extreme and ultra subdwarfs likely belong to the Galactic halo, while the ordinary subdwarfs are likely part of the old Galactic (or thick) disk. An extensive activity analysis of subdwarfs is performed using H$alpha$ emission and 208 active subdwarfs are found. We show that while the activity fraction of subdwarfs rises with spectral class and levels off at the latest spectral classes, consistent with the behavior of M dwarfs, the extreme and ultra subdwarfs are basically flat.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا