ﻻ يوجد ملخص باللغة العربية
In this paper we present a topological magnetic field investigation of seven two-ribbon flares in sigmoidal active regions observed with Hinode, STEREO, and SDO. We first derive the 3D coronal magnetic field structure of all regions using marginally unstable 3D coronal magnetic field models created with the flux rope insertion method. The unstable models have been shown to be a good model of the flaring magnetic field configurations. Regions are selected based on their pre-flare configurations along with the appearance and observational coverage of flare ribbons, and the model is constrained using pre-flare features observed in extreme ultraviolet and X-ray passbands. We perform a topology analysis of the models by computing the squashing factor, Q, in order to determine the locations of prominent quasi-separatrix layers (QSLs). QSLs from these maps are compared to flare ribbons at their full extents. We show that in all cases the straight segments of the two J-shaped ribbons are matched very well by the flux-rope-related QSLs, and the matches to the hooked segments are less consistent but still good for most cases. In addition, we show that these QSLs overlay ridges in the electric current density maps. This study is the largest sample of regions with QSLs derived from 3D coronal magnetic field models, and it shows that the magnetofrictional modeling technique that we employ gives a very good representation of flaring regions, with the power to predict flare ribbon locations in the event of a flare following the time of the model.
With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive o
We studied a circular-ribbon flare, SOL2014-12-17T04:51, with emphasis on its thermal evolution as determined by the Differential Emission Measure (DEM) inversion analysis of the extreme ultraviolet (EUV) images of the Atmospheric Imaging Assembly (A
Observations of solar flares at sub-THz frequencies (mm and sub-mm wavelengths) over the last two decades often show a spectral component rising with frequency. Unlike a typical gyrosynchrotron spectrum decreasing with frequency, or a weak thermal co
On SOL2017-09-06 solar active region 12673 produced an X9.3 flare which is regarded as largest to occur in solar cycle 24. In this work we have preformed a magnetohydrodynamic (MHD) simulation in order to reveal the three-dimensional (3D) dynamics of
Observations from the textit{Interface Region Imaging Spectrograph} (textsl{IRIS}) often reveal significantly broadened and non-reversed profiles of the Mg II h, k and triplet lines at flare ribbons. To understand the formation of these optically thi