ترغب بنشر مسار تعليمي؟ اضغط هنا

The nilpotent bicone of a finite dimensional complex reductive Lie algebra g is the subset of elements in g x g whose subspace generated by the components is contained in the nilpotent cone of g. The main result of this note is that the nilpotent bic one is a complete intersection. This affirmatively answers a conjecture of Kraft-Wallach concerning the nullcone. In addition, we introduce and study the characteristic submodule of g. The properties of the nilpotent bicone and the characteristic submodule are known to be very important for the understanding of the commuting variety and its ideal of definition. In order to study the nilpotent bicone, we introduce another subvariety, the principal bicone. The nilpotent bicone, as well as the principal bicone, are linked to jet schemes. We study their dimensions using arguments from motivic integration. Namely, we follow methods developed in http://arxiv.org/abs/math/0008002v5 .
129 - Anne Moreau 2014
We study in this paper the jet schemes of the closure of nilpotent orbits in a finite-dimensional complex reductive Lie algebra. For the nilpotent cone, which is the closure of the regular nilpotent orbit, all the jet schemes are irreducible. This wa s first observed by Eisenbud and Frenkel, and follows from a strong result of Mustau{t}c{a} (2001). Using induction and restriction of little nilpotent orbits in reductive Lie algebras, we show that for a large number of nilpotent orbits, the jet schemes of their closure are reducible. As a consequence, we obtain certain geometrical properties of these nilpotent orbit closures.
Let g be a finite-dimensional simple Lie algebra of rank r over an algebraically closed field of characteristic zero, and let e be a nilpotent element of g. Denote by g^e the centralizer of e in g and by S(g^e)^{g^e} the algebra of symmetric invarian ts of g^e. We say that e is good if the nullvariety of some r homogeneous elements of S(g^e)^{g^e} in the dual of g^{e} has codimension r. If e is good then S(g^e)^{g^e} is polynomial. The main result of this paper stipulates that if for some homogeneous generators of S(g^e)^{g^e}, the initial homogeneous component of their restrictions to e+g^f are algebraically independent, with (e,h,f) an sl2-triple of g, then e is good. As applications, we obtain new examples of nilpotent elements that verify the above polynomiality condition, in in simple Lie algebras of both classical and exceptional types. We also give a counter-example in type D_7.
68 - Anne Moreau 2013
This note is a corrigendum to the previous version arXiv:0711.2735v3 published in J. Lie Theory. As it has been recently pointed out to me by Alexander Premet, Remark 3 of arXiv:0711.2735v3 is incorrect. We verify in this note thanks to recent result s of Premet and Topley (see arXiv:1301.4653) that Theorem 25 of arXiv:0711.2735v3 remains correct in spite of this error.
A connected algebraic group Q defined over a field of characteristic zero is quasi-reductive if there is an element of its dual of reductive type, that is such that the quotient of its stabiliser by the centre of Q is a reductive subgroup of GL(q), w here q=Lie(Q). Due to results of M. Duflo, coadjoint representation of a quasi-reductive Q possesses a so called maximal reductive stabiliser and knowing this subgroup, defined up to a conjugation in Q, one can describe all coadjoint orbits of reductive type. In this paper, we consider quasi-reductive parabolic subalgebras of simple complex Lie algebras as well as all seaweed subalgebras of gl(n) and describe the classes of their maximal reductive stabilisers.
For a finite dimensional complex Lie algebra, its index is the minimal dimension of stabilizers for the coadjoint action. A famous conjecture due to Elashvili says that the index of the centralizer of an element of a reductive Lie algebra is equal to the rank. That conjecture caught attention of several Lie theorists for years. In this paper we give an almost general proof of that conjecture.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا