ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that Sturms classical separation theorem on the interlacing of the zeros of linearly independent solutions of real second order two-term ordinary differential equations necessarily fails in the presence of a unique turning point in the princi pal part of the equation. Related results are discussed. The last section contains an extension of the main result to a finite number of turning points.
Uncertainty relations between two general non-commuting self-adjoint operators are derived in a Krein space. All of these relations involve a Krein space induced fundamental symmetry operator, $J$, while some of these generalized relations involve an anti-commutator, a commutator, and various other nonlinear functions of the two operators in question. As a consequence there exist classes of non-self-adjoint operators on Hilbert spaces such that the non-vanishing of their commutator implies an uncertainty relation. All relations include the classical Heisenberg uncertainty principle as formulated in Hilbert Space by Von Neumann and others. In addition, we derive an operator dependent (nonlinear) commutator uncertainty relation in Krein space.
(Draft 3) A generalized differential operator on the real line is defined by means of a limiting process. These generalized derivatives include, as a special case, the classical derivative and current studies of fractional differential operators. All such operators satisfy properties such as the sum, product/quotient rules, chain rule, etc. We study a Sturm-Liouville eigenvalue problem with generalized derivatives and show that the general case is actually a consequence of standard Sturm-Liouville Theory. As an application of the developments herein we find the general solution of a generalized harmonic oscillator. We also consider the classical problem of a planar motion under a central force and show that the general solution of this problem is still generically an ellipse, and that this result is true independently of the choice of the generalized derivatives being used modulo a time shift. The previous result on the generic nature of phase plane orbits is extended to the classical gravitational n-body problem of Newton to show that the global nature of these orbits is independent of the choice of the generalized derivatives being used in defining the force law (modulo a time shift). Finally, restricting the generalized derivatives to a special class of fractional derivatives, we consider the question of motion under gravity with and without resistance and arrive at a new notion of time that depends on the fractional parameter. The results herein are meant to clarify and extend many known results in the literature and intended to show the limitations and use of generalized derivatives and corresponding fractional derivatives.
We continue the study of a non self-adjoint fractional three-term Sturm-Liouville boundary value problem (with a potential term) formed by the composition of a left Caputo and left-Riemann-Liouville fractional integral under {it Dirichlet type} bound ary conditions. We study the existence and asymptotic behavior of the real eigenvalues and show that for certain values of the fractional differentiation parameter $alpha$, $0<alpha<1$, there is a finite set of real eigenvalues and that, for $alpha$ near $1/2$, there may be none at all. As $alpha to 1^-$ we show that their number becomes infinite and that the problem then approaches a standard Dirichlet Sturm-Liouville problem with the composition of the operators becoming the operator of second order differentiation.
We introduce and present the general solution of three two-term fractional differential equations of mixed Caputo/Riemann Liouville type. We then solve a Dirichlet type Sturm-Liouville eigenvalue problem for a fractional differential equation derived from a special composition of a Caputo and a Riemann-Liouville operator on a finite interval where the boundary conditions are induced by evaluating Riemann-Liouville integrals at those end-points. For each $1/2<alpha<1$ it is shown that there is a finite number of real eigenvalues, an infinite number of non-real eigenvalues, that the number of such real eigenvalues grows without bound as $alpha to 1^-$, and that the fractional operator converges to an ordinary two term Sturm-Liouville operator as $alpha to 1^-$ with Dirichlet boundary conditions. Finally, two-sided estimates as to their location are provided as is their asymptotic behavior as a function of $alpha$.
We give a purely mathematical interpretation and construction of sculptures rendered by one of the authors, known herein as Fels sculptures. We also show that the mathematical framework underlying Fergusons sculpture, {it The Ariadne Torus}, may be c onsidered a special case of the more general constructions presented here. More general discussions are also presented about the creation of such sculptures whether they be virtual or in higher dimensional space.
We announce a number of conjectures associated with and arising from a study of primes and irrationals in $mathbb{R}$. All are supported by numerical verification to the extent possible.
We show that there is no classical regular Sturm-Liouville problem on a finite interval whose spectrum consists of infinitely many distinct primes numbers. In particular, this answers in the negative a question raised by Zettl in his book on Sturm-Li ouville theory. We also show that there {it may} exist such a problem if the parameter dependence is nonlinear.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا