ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - Andrey Pototsky , Uwe Thiele , 2014
We consider a carpet of self-propelled particles at the liquid-gas interface of a liquid film on a solid substrate. The particles excert an excess pressure on the interface and also move along the interface while the swimming direction performs rotat ional diffusion. We study the intricate influence of these self-propelled insoluble surfactants on the stability of the film surface and show that depending on the strength of in-surface rotational diffusion and the absolute value of the in-surface swimming velocity several characteristic instability modes can occur. In particular, rotational diffusion can either stabilize the film or induce instabilities of different character.
There are two modes by which clusters of aggregating particles can coalesce: The clusters can merge either (i) by the Ostwald ripening process in which particles diffuse from one cluster to the other whilst the cluster centres remain stationary, or ( ii) by means of a cluster translation mode, in which the clusters move towards each other and join. To understand in detail the interplay between these different modes, we study a model system of hard particles with an additional attraction between them. The particles diffuse along narrow channels with smooth or periodically corrugated walls, so that the system may be treated as one-dimensional. When the attraction between the particles is strong enough, they aggregate to form clusters. The channel potential influences whether clusters can move easily or not through the system and can prevent cluster motion. We use Dynamical Density Functional theory to study the dynamics of the aggregation process, focusing in particular on the coalescence of two equal size clusters. As long as the particle hard-core diameter is non-zero, we find that the coalescence process can be halted by a sufficiently strong corrugation potential. The period of the potential determines the size of the final stable clusters. For the case of smooth channel walls, we demonstrate that there is a cross-over in the dominance of the two different coarsening modes, that depends on the strength of the attraction between particles, the cluster sizes and the separation distance between clusters.
The motion of self-propelled particles can be rectified by asymmetric or ratchet-like periodic patterns in space. Here we show that a non-zero average drift can already be induced in a periodic potential with symmetric barriers when the self-propulsi on velocity is also symmetric and periodically modulated but phase-shifted against the potential. In the adiabatic limit of slow rotational diffusion we determine the mean drift analytically and discuss the influence of temperature. In the presence of asymmetric barriers modulating the self-propulsion can largely enhance the mean drift or even reverse it.
We consider a two-dimensional gas of colliding charged particles confined to finite size containers of various geometries and subjected to a uniform orthogonal magnetic field. The gas spectral densities are characterized by a broad peak at the cyclot ron frequency. Unlike for infinitely extended gases, where the amplitude of the cyclotron peak grows linearly with temperature, here confinement causes such a peak to go through a maximum for an optimal temperature. In view of the fluctuation-dissipation theorem, the reported resonance effect has a direct counterpart in the electric susceptibility of the confined magnetized gas.
We consider the unidirectional particle transport in a suspension of colloidal particles which interact with each other via a pair potential having a hard-core repulsion plus an attractive tail. The colloids are confined within a long narrow channel and are driven along by a DC or an AC external potential. In addition, the walls of the channel interact with the particles via a ratchet-like periodic potential. We use dynamical density functional theory to compute the average particle current. In the case of DC drive, we show that as the attraction strength between the colloids is increased beyond a critical value, the stationary density distribution of the particles loses its stability leading to depinning and a time dependent density profile. Attraction induced symmetry breaking gives rise to the coexistence of stable stationary density profiles with different spatial periods and time-periodic density profiles, each characterized by different values for the particle current.
The rectification of a single file of attracting particles subjected to a low frequency ac drive is proposed as a working mechanism for particle shuttling in an asymmetric narrow channel. Increasing the particle attraction results in the file condens ing, as signalled by the dramatic enhancement of the net particle current. Magnitude and direction of the current become extremely sensitive to the actual size of the condensate, which can then be made to shuttle between two docking stations, transporting particles in one direction, with an efficiency much larger than conventional diffusive models predict.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا