ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper introduces a theoretical framework for understanding the accumulation of non-Abelian geometric phases in rotating nitrogen-vacancy centers in diamond. Specifically, we consider how degenerate states can be achieved and demonstrate that the resulting geometric phase for multiple paths is non-Abelian. We find that the non-Abelian nature of the phase is robust to fluctuations in the path and magnetic field. In contrast to previous studies of the accumulation of Abelian geometric phases for nitrogen-vacancy centers under rotation we find that the limiting time-scale is $T_{1}$. As such a non-Abelian geometric phase accumulation in nitrogen-vacancy centers has potential advantages for applications as gyroscopes.
Jaynes-Cummings-Hubbard lattices provide unique properties for the study of correlated phases as they exhibit convenient state preparation and measurement, as well as in situ tuning of parameters. We show how to realize charge density and supersolid phases in Jaynes-Cummings-Hubbard lattices in the presence of long-range interactions. The long-range interactions are realized by the consideration of Rydberg states in coupled atom-cavity systems and the introduction of additional capacitive couplings in quantum-electrodynamics circuits. We demonstrate the emergence of supersolid and checkerboard solid phases, for calculations which take into account nearest neighbour couplings, through a mean-field decoupling.
We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate, in a rotating cylindrically symmetric parabolic trap. From this solution the Kelvin wave dispersion relation is determined. In the limit of an oblate trap and in the absence of longitudinal trapping our results are consistent with previous work. We show that the derived Kelvin wave dispersion in the general case is in quantitative agreement with numerical calculations of the Bogoliubov spectrum and offer a significant improvement upon previous analytical work.
We theoretically examine three-well interferometry in Bose-Einstein condensates using adiabatic passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables stable spatial splitting in the presence of nonlinear interactions. A reversal of this protocol produces a coherent recombination of the BEC with a phase-dependent population of the three wells. The effect of nonlinear interactions on the interferometric measurement is quantified and found to lead to an enhancement in sensitivity for moderate interaction strengths.
The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.
We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external rotation. Thermodynamic quantities such as the entropy and energy are calculated from the third order quantum virial expansion. By parame terizing the solutions in the rotating frame we find that the energy and entropy are universal for all rotations in the strongly interacting regime. Additionally, we find that rotation suppresses the onset of itinerant ferromagnetism in strongly interacting repulsive three-body systems.
We analytically determine the properties of two interacting particles in a harmonic trap subject to a rotation or a uniform synthetic magnetic field, where the spherical symmetry of the relative Hamiltonian is preserved. Thermodynamic quantities such as the entropy and energy are calculated via the second order quantum cluster expansion. We find that in the strongly interacting regime the energy is universal, however the entropy changes as a function of the rotation or synthetic magnetic field strength.
Engineering of synthetic magnetic flux in Bose-Einstein condensates [Lin et al., Nature {bf 462}, 628 (2009)] has prospects for attaining the high vortex densities necessary to emulate the fractional quantum Hall effect. We analytically establish the hydrodynamical behaviour of a condensate in a uniform synthetic magnetic field, including its density and velocity profile. Importantly, we find that the onset of vortex nucleation observed experimentally corresponds to a dynamical instability in the hydrodynamical solutions and reveal other routes to instability and anticipated vortex nucleation.
We propose an experiment that would produce and measure a large Aharonov-Casher (A-C) phase in a solid-state system under macroscopic motion. A diamond crystal is mounted on a spinning disk in the presence of a uniform electric field. Internal magnet ic states of a single NV defect, replacing interferometer trajectories, are coherently controlled by microwave pulses. The A-C phase shift is manifested as a relative phase, of up to 17 radians, between components of a superposition of magnetic substates, which is two orders of magnitude larger than that measured in any other atom-scale quantum system.
We present a theoretical analysis of dilute gas Bose-Einstein condensates with dipolar atomic interactions under rotation in elliptical traps. Working in the Thomas-Fermi limit, we employ the classical hydrodynamic equations to first derive the rotat ing condensate solutions and then consider their response to perturbations. We thereby map out the regimes of stability and instability for rotating dipolar Bose-Einstein condensates and in the latter case, discuss the possibility of vortex lattice formation. We employ our results to propose several novel routes to induce vortex lattice formation in a dipolar condensate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا