ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the Percus-Yevick approach in the chemical-potential route to evaluate the equation of state of hard hyperspheres in five dimensions. The evaluation requires the derivation of an analytical expression for the contact value of the pair distribu tion function between particles of the bulk fluid and a solute particle with arbitrary size. The equation of state is compared with those obtained from the conventional virial and compressibility thermodynamic routes and the associated virial coefficients are computed. The pressure calculated from all routes is exact up to third density order, but it deviates with respect to simulation data as density increases, the compressibility and the chemical-potential routes exhibiting smaller deviations than the virial route. Accurate linear interpolations between the compressibility route and either the chemical-potential route or the virial one are constructed.
The depletion force and depletion potential between two in principle unequal big hard spheres embedded in a multicomponent mixture of small hard spheres are computed using the Rational Function Approximation method for the structural properties of ha rd-sphere mixtures [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. {bf 108}, 3683 (1998)]. The cases of equal solute particles and of one big particle and a hard planar wall in a background monodisperse hard-sphere fluid are explicitly analyzed. An improvement over the performance of the Percus-Yevick theory and good agreement with available simulation results are found
The coupling-parameter method, whereby an extra particle is progressively coupled to the rest of the particles, is applied to the sticky-hard-sphere fluid to obtain its equation of state in the so-called chemical-potential route ($mu$ route). As a co nsistency test, the results for one-dimensional sticky particles are shown to be exact. Results corresponding to the three-dimensional case (Baxters model) are derived within the Percus-Yevick approximation by using different prescriptions for the dependence of the interaction potential of the extra particle on the coupling parameter. The critical point and the coexistence curve of the gas-liquid phase transition are obtained in the $mu$ route and compared with predictions from other thermodynamics routes and from computer simulations. The results show that the $mu$ route yields a general better description than the virial, energy, compressibility, and zero-separation routes.
85 - F. Vega Reyes , A. Santos , 2013
A gas of inelastic rough spheres admits a spatially homogeneous base state which turns into a hydrodynamic state after a finite relaxation time. We show that this relaxation time is hardly dependent on the degree of inelasticity but increases dramati cally with decreasing roughness. An accurate description of translational-rotational velocity correlations at all times is also provided. At a given inelasticity, the roughness parameter can be tuned to produce a huge distortion from the Maxwellian distribution function. The results are obtained from a Grad-like solution of the Boltzmann-Enskog equation complemented by Monte Carlo and molecular dynamics simulations.
The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixture s with zero or positive nonadditivity. As a simple application, the chemical potentials of three-dimensional additive hard-sphere mixtures are derived from the Percus-Yevick theory and the associated equation of state is obtained. This Percus-Yevick chemical-route equation of state is shown to be more accurate than the virial equation of state. An interpolation between the chemical-potential and compressibility routes exhibits a better performance than the well-known Boublik-Mansoori-Carnahan-Starling-Leland equation of state.
Structural and thermodynamic properties of multicomponent hard-sphere fluids at odd dimensions have recently been derived in the framework of the rational function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E textbf{83}, 011201 (2011)]. It is demonstrated here that the RFA technique yields the exact solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ) equation for binary mixtures at arbitrary odd dimensions. The proof relies mainly on the Fourier transforms $hat{c}_{ij}(k)$ of the direct correlation functions defined by the OZ relation. From the analysis of the poles of $hat{c}_{ij}(k)$ we show that the direct correlation functions evaluated by the RFA method vanish outside the hard core, as required by the PY theory.
182 - M. Lopez de Haro , A. Santos , 2008
A simple equation of state for hard disks on the hyperbolic plane is proposed. It yields the exact second virial coefficient and contains a pole at the highest possible packing. A comparison with another very recent theoretical proposal and simulation data is presented.
We discuss in this work the validity of the theoretical solution of the nonlinear Couette flow for a granular impurity obtained in a recent work [preprint arXiv:0802.0526], in the range of large inelasticity and shear rate. We show there is a good ag reement between the theoretical solution and Monte Carlo simulation data, even under these extreme conditions. We also discuss an extended theoretical solution that would work for large inelasticities in ranges of shear rate $a$ not covered by our previous work (i.e., below the threshold value $a_{th}$ for which uniform shear flow may be obtained) and compare also with simulation data. Preliminary results in the simulations give useful insight in order to obtain an exact and general solution of the nonlinear Couette flow (both for $age a_{th}$ and $a<a_{th}$).
The Boltzmann equation for inelastic Maxwell models is considered to determine the velocity moments through fourth degree in the simple shear flow state. First, the rheological properties (which are related to the second-degree velocity moments) are {em exactly} evaluated in terms of the coefficient of restitution $alpha$ and the (reduced) shear rate $a^*$. For a given value of $alpha$, the above transport properties decrease with increasing shear rate. Moreover, as expected, the third-degree and the asymmetric fourth-degree moments vanish in the long time limit when they are scaled with the thermal speed. On the other hand, as in the case of elastic collisions, our results show that, for a given value of $alpha$, the scaled symmetric fourth-degree moments diverge in time for shear rates larger than a certain critical value $a_c^*(alpha)$ which decreases with increasing dissipation. The explicit shear-rate dependence of the fourth-degree moments below this critical value is also obtained.
114 - M. Lopez de Haro , S. B. Yuste , 2007
An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consisten t formulation, thus improving and extending the known analytical results of the Percus-Yevick theory. Approximate expressions for the contact values of the radial distribution functions and the corresponding analytical equations of state are also discussed. Extensions of this methodology to related systems, such as sticky hard spheres and square-well fluids, as well as its use in connection with the perturbation theory of fluids are briefly addressed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا