ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new approach to obtaining the scaling behavior of the entanglement entropy in fractional quantum Hall states from finite-size wavefunctions. By employing the torus geometry and the fact that the torus aspect ratio can be readily varied, we can extract the entanglement entropy of a spatial block as a continuous function of the block boundary. This approach allows us to extract the topological entanglement entropy with an accuracy superior to what is possible on the spherical or disc geometry, where no natural continuously variable parameter is available. Other than the topological information, the study of entanglement scaling is also useful as an indicator of the difficulty posed by fractional quantum Hall states for various numerical techniques.
We present an implementation of the hybridization expansion impurity solver which employs sparse matrix exact-diagonalization techniques to compute the time evolution of the local Hamiltonian. This method avoids computationally expensive matrix-matri x multiplications and becomes advantageous over the conventional implementation for models with 5 or more orbitals. In particular, this method will allow the systematic investigation of 7-orbital systems (lanthanide and actinide compounds) within single-site dynamical mean field theory. We illustrate the power and usefulness of our approach with dynamical mean field results for a 5-orbital model which captures some aspects of the physics of the iron based superconductors.
We present a detailed study of the population imbalanced three-component Hubbard chain with attractive interactions. Such a system can be realized experimentally with three different hyperfine states of ultra cold $^6$Li atoms in an optical lattice. We find that there are different phases that compete with each other in this system: A molecular superfluid phase in which the three fermion species pair up to form molecules (trions), a usual pairing phase involving two species with exactly opposite momenta, and a more exotic generalized Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase consisting of three competing pairing tendencies with different non-zero center-of-mass momenta. At large attractive interactions the system exhibits strong tendencies towards collapse and phase separation. Employing the density-matrix-renormalization-group-method (DMRG) to determine the decay exponents of the various correlators we establish the phase diagram of this model for different fillings and interactions. We also discuss the experimentally relevant situation in a trap and report the existence of an additional region where two species are dynamically balanced.
We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has importan t spectral weight predominantly along the boundary of the extended Brillouin zone and energy scans reveal broad response extending over a range of 2 sim 3J concomitant with pronounced intensity at lowest available energies. Dispersive features are largely absent. Dynamical singlet correlations -- which are relevant for inelastic light probes -- reveal a similar broad response, with a high intensity at low frequencies omega/J lesssim 0.2J. These low energy singlet excitations do however not seem to favor a specific valence bond crystal, but instead spread over many symmetry allowed eigenstates.
We study the physics of cold polar molecules loaded into an optical lattice in the regime of strong three-body interactions, as put forward recently by Buchler [Nature Phys. 3, 726 (2007)]. To this end quantum Monte Carlo simulations, exact diagonali zation and a semiclassical approach are used to explore hardcore bosons on the two-dimensional square lattice which interact solely by long ranged three-body terms. The resulting phase diagram shows a sequence of solid and supersolid phases. Our findings are directly relevant for future experimental implementations and open a new route towards the discovery of a lattice supersolid phase in experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا