ترغب بنشر مسار تعليمي؟ اضغط هنا

We generalize in several directions our recent analysis of the limitations to the use of the effective field theory approach to study dark matter at the LHC. Firstly, we study the full list of operators connecting fermion DM to quarks and gluons, cor responding to integrating out a heavy mediator in the $s$-channel; secondly, we provide analytical results for the validity of the EFT description for both $sqrt{s}=8$ {rm TeV} and $14$ {rm TeV}; thirdly, we make use of a MonteCarlo event generator approach to assess the validity of our analytical conclusions. We apply our results to revisit the current collider bounds on the ultraviolet cut-off scale of the effective field theory and show that these bounds are weakened once the validity conditions of the effective field theory are imposed.
We discuss the limitations to the use of the effective field theory approach to study dark matter at the LHC. We introduce and study a few quantities, some of them independent of the ultraviolet completion of the dark matter theory, which quantify th e error made when using effective operators to describe processes with very high momentum transfer. Our criteria indicate up to what cutoff energy scale, and with what precision, the effective description is valid, depending on the dark matter mass and couplings.
We analyze the validity of the theorems concerning the cancellation of the infrared and collinar divergences in the case of dark matter freeze-out in the early universe. In particular, we compute the electroweak logarithmic corrections of infrared or igin to the annihilation cross section of a dark matter particle being the neutral component of a SU(2)_L multiplet. The inclusion of processes with final state W can modify significantly the cross sections computed with only virtual W exchange. Our results show that the inclusion of infrared logs is necessary for a precise computation of the dark matter relic abundance.
The AMS-02 collaboration has recently released data on the positron fraction $e^+/(e^-+e^+)$ up to energies of about 350 GeV. If one insists on interpreting the observed excess as a dark matter signal, then we find it is best described by a TeV-scale dark matter annihilating into $tau^+tau^-$, although this situation is already severely constrained by gamma-ray measurements. The annihilation into $mu^+mu^-$ is allowed by gamma-rays more than $tau^+tau^-$, but it gives a poorer fit to textsc{AMS-02} data. Moreover, since electroweak corrections induce correlations among the fluxes of stable particles from dark matter annihilations, the recent AMS-02 data imply a well-defined prediction for the correlated flux of antiprotons. Under the assumption that their future measurements will not show any antiproton excess above the background, the dark matter interpretation of the positron rise will possibly be ruled out by only making use of data from a single experiment. This work is the first of a program where we emphasize the role of correlations among dark matter signals.
We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
We provide a systematic effective lagrangian description of the phenomenology of the lightest top-partners in composite Higgs models. Our construction is based on symmetry, on selection rules and on plausible dynamical assumptions. The structure of t he resulting simplified models depends on the quantum numbers of the lightest top partner and of the operators involved in the generation of the top Yukawa. In all cases the phenomenology is conveniently described by a small number of parameters, and the results of experimental searches are readily interpreted as a test of naturalness. We recast presently available experimental bounds on heavy fermions into bounds on top partners: LHC has already stepped well inside the natural region of parameter space.
We propose that the Standard Model (SM) Higgs is responsible for generating the cosmological perturbations of the universe by acting as an isocurvature mode during a de Sitter inflationary stage. In view of the recent ATLAS and CMS results for the Hi ggs mass, this can happen if the Hubble rate during inflation is in the range $(10^{10}- 10^{14})$ GeV (depending on the SM parameters). Implications for the detection of primordial tensor perturbations through the $B$-mode of CMB polarization via the PLANCK satellite are discussed. For example, if the Higgs mass value is confirmed to be $m_h=125.5$ GeV and $m_t, alpha_s$ are at their central values, our mechanism predicts tensor perturbations too small to be detected in the near future. On the other hand, if tensor perturbations will be detected by PLANCK through the $B$-mode of CMB, then there is a definite relation between the Higgs and top masses, making the mechanism predictive and falsifiable.
If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W+W-, while the annihilation into light fermions is helicity suppress ed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermion channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.
75 - Andrea De Simone 2008
The quantum Boltzmann equations relevant for leptogenesis, obtained using non-equilibrium quantum field theory, are described. They manifest memory effects leading to a time-dependent CP asymmetry which depends upon the previous history of the system . This result is particularly relevant in resonant leptogenesis where the asymmetry is generated by the decays of nearly mass-degenerate right-handed neutrinos. The impact of the non-trivial time evolution of the CP asymmetry is discussed either in the generic resonant leptogenesis scenario or in the more specific Minimal Lepton Flavour Violation framework. Significant quantitative differences arise with respect to the usual approach in which the time dependence of the CP asymmetry is neglected.
It has been recently shown that the quantum Boltzmann equations may be relevant for the leptogenesis scenario. In particular, they lead to a time-dependent CP asymmetry which depends upon the previous dynamics of the system. This memory effect in the CP asymmetry is particularly important in resonant leptogenesis where the asymmetry is generated by the decays of nearly mass-degenerate right-handed neutrinos. We study the impact of the non-trivial time evolution of the CP asymmetry in the so-called Minimal Lepton Flavour Violation framework where the charged-lepton and the neutrino Yukawa couplings are the only irreducible sources of lepton-flavour symmetry breaking and resonant leptogenesis is achieved. We show that significant quantitative differences arise with respect to the case in which the time dependence of the CP asymmetry is neglected.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا