ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated optical orientation in the vicinity of the direct gap of bulk germanium. The electron spin polarization is studied via polarization-resolved photoluminescence excitation spectroscopy unfolding the interplay between doping and ult rafast electron transfer from the center of the Brillouin zone towards its edge. As a result, the direct-gap photoluminescence circular polarisation can vary from 30% to -60% when the excitation laser energy increases. This study provides also simultaneous access to the resonant electronic Raman scattering due to inter-valence band excitations of spin-polarized holes, yielding a fast and versatile spectroscopic approach for the determination of the energy spectrum of holes in semiconducting materials.
308 - G. Wang , C. R. Zhu , B. L. Liu 2014
We have measured the donor-bound electron spin dynamics in cubic GaN by time-resolved Kerr rotation experiments. The ensemble electron spin dephasing time in this quantum dot like system characterized by a Bohr radius of 2.5 nm is of the order of 1.5 ns as a result of the interaction with the fluctuating nuclear spins. It increases drastically when an external magnetic field as small as 10 mT is applied. We extract a dispersion of the nuclear hyperfine field {delta}Bn $sim$ 4 mT, in agreement with calculations. We also demonstrate for the first time in GaN based systems the optical pumping of nuclear spin yielding the build-up of a significant nuclear polarization.
We study the electron spin relaxation in both symmetric and asymmetric GaAs/AlGaAs quantum wells (QWs) grown on (110) substrates in an external magnetic field B applied along the QW normal. The spin polarization is induced by circularly polarized lig ht and detected by time-resolved Kerr rotation technique. In the asymmetric structure, where a {delta}-doped layer on one side of the QW produces the Rashba contribution to the conduction-band spin-orbit splitting, the lifetime of electron spins aligned along the growth axis exhibits an anomalous dependence on B in the range 0<B<0.5 T; this results from the interplay between the Dresselhaus and Rashba effective fields which are perpendicular to each other. For larger magnetic fields, the spin lifetime increases, which is the consequence of the cyclotron motion of the electrons and is also observed in (001)-grown quantum wells. The experimental results are in agreement with the calculation of the spin lifetimes in (110)- grown asymmetric quantum wells described by the point group Cs where the growth direction is not the principal axis of the spin-relaxation-rate tensor.
The effect of hyperfine interaction on the room-temperature defect-enabled spin filtering effect in GaNAs alloys is investigated both experimentally and theoretically through a master equation approach based on the hyperfine and Zeeman interaction be tween electron and nuclear spin of the spin filtering defect. We show that the nuclear spin polarization can be tuned through the optically induced spin polarization of conduction band electrons.
We report on the selective creation of spin filltering regions in non-magnetic InGaAs layers by implantation of Ga ions by Focused Ion Beam. We demonstrate by photoluminescence spectroscopy that spin dependent recombination (SDR) ratios as high as 24 0% can be achieved in the implanted areas. The optimum implantation conditions for the most efficient SDR is determined by the systematic analysis of different ion doses spanning four orders of magnitude. The application of a weak external magnetic field leads to a sizeable enhancement of the SDR ratio from the spin polarization of the nuclei surrounding the polarized implanted paramagnetic defects.
Optical orientation experiments have been performed in GaAs epilayers with photoexcitation energies in the 3 eV region yielding the photogeneration of spin-polarized electrons in the satellite L valley. We demonstrate that a significant fraction of t he electron spin memory can be conserved when the electron is scattered from the L to the $Gamma$ valley following an energy relaxation of several hundreds of meV. Combining these high energy photo-excitation experiments with time-resolved photoluminescence spectroscopy of $Gamma$ valley spin-polarized photogenerated electrons allows us to deduce a typical L valley electron spin relaxation time of 200 fs, in agreement with theoretical calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا