ترغب بنشر مسار تعليمي؟ اضغط هنا

L-valley Electron Spin Dynamics in GaAs

129   0   0.0 ( 0 )
 نشر من قبل Andrea Balocchi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical orientation experiments have been performed in GaAs epilayers with photoexcitation energies in the 3 eV region yielding the photogeneration of spin-polarized electrons in the satellite L valley. We demonstrate that a significant fraction of the electron spin memory can be conserved when the electron is scattered from the L to the $Gamma$ valley following an energy relaxation of several hundreds of meV. Combining these high energy photo-excitation experiments with time-resolved photoluminescence spectroscopy of $Gamma$ valley spin-polarized photogenerated electrons allows us to deduce a typical L valley electron spin relaxation time of 200 fs, in agreement with theoretical calculations.



قيم البحث

اقرأ أيضاً

124 - A. Amo , L. Vina , P. Lugli 2006
By means of time-resolved optical orientation under strong optical pumping, the k-dependence of the electron spin-flip time (t_sf) in undoped GaAs is experimentally determined. t_sf monotonically decreases by more than one order of magnitude when the electron kinetic energy varies from 2 to 30 meV. At the high excitation densities and low temperatures of the reported experiments the main spin-flip mechanism of the conduction band electrons is the Bir-Aronov-Pikus. By means of Monte-Carlo simulations we evidence that phase-space filling effects result in the blocking of the spin flip, yielding an increase of t_sf with excitation density. These effects obtain values of t_sf up to 30 ns at k=0, the longest reported spin-relaxation time in undoped GaAs in the absence of a magnetic field.
A novel spin-spin coupling mechanism that occurs during the transport of spin-polarized minority electrons in semiconductors is described. Unlike the Coulomb spin drag, this coupling arises from the ambipolar electric field which is created by the di fferential movement of the photoelectrons and the photoholes. Like the Coulomb spin drag, it is a pure spin coupling that does not affect charge diffusion. Experimentally, the coupling is studied in $p^+$ GaAs using polarized microluminescence. The coupling manifests itself as an excitation power dependent reduction in the spin polarization at the excitation spot textit{without} any change of the spatially averaged spin polarization.
Optical pump-THz probe spectroscopy is used to investigate the exciton formation dynamics and its intensity dependence in bulk Ge. Associated with the intra-excitonic 1s-2p transition, the gradual build-up of an absorption peak around 3.1 meV (0.75 T Hz) signifies the delayed exciton formation after optical pump which is accelerated for higher excitation densities. Analyzing the spectral shape of this THz absorption resonance, two distinct resonances are found which are attributed to the mass-anisotropy of L valley electrons via a microscopic theory.
Through a combined theoretical and experimental effort, we uncover a yet unidentified mechanism that strengthens considerably electron-phonon coupling in materials where electron accumulation leads to population of multiple valleys. Taking atomically -thin transition-metal dichalcogenides as prototypical examples, we establish that the mechanism results from a phonon-induced out-of-phase energy shift of the different valleys, which causes inter-valley charge transfer and reduces the effectiveness of electrostatic screening, thus enhancing electron-phonon interactions. The effect is physically robust, it can play a role in many materials and phenomena, as we illustrate by discussing experimental evidence for its relevance in the occurrence of superconductivity. (short abstract due to size limitations - full abstract in the manuscript)
We present experimental data and associated theory for correlations in a series of experiments involving repeated Landau-Zener sweeps through the crossing point of a singlet state and a spin aligned triplet state in a GaAs double quantum dot containi ng two conduction electrons, which are loaded in the singlet state before each sweep, and the final spin is recorded after each sweep. The experiments reported here measure correlations on time scales from 4 $mu$s to 2 ms. When the magnetic field is aligned in a direction such that spin-orbit coupling cannot cause spin flips, the correlation spectrum has prominent peaks centered at zero frequency and at the differences of the Larmor frequencies of the nuclei, on top of a frequency-independent background. When the spin-orbit field is relevant, there are additional peaks, centered at the frequencies of the individual species. A theoretical model which neglects the effects of high-frequency charge noise correctly predicts the positions of the observed peaks, and gives a reasonably accurate prediction of the size of the frequency-independent background, but gives peak areas that are larger than the observed areas by a factor of two or more. The observed peak widths are roughly consistent with predictions based on nuclear dephasing times of the order of 60 $mu$s. However, there is extra weight at the lowest observed frequencies, which suggests the existence of residual correlations on the scale of 2 ms. We speculate on the source of these discrepancies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا