ترغب بنشر مسار تعليمي؟ اضغط هنا

A closed piecewise linear curve is called integral if it is comprised of unit intervals. Kenyons problem asks whether for every integral curve $gamma$ in $mathbb{R}^3$, there is a dome over $gamma$, i.e. whether $gamma$ is a boundary of a polyhedral surface whose faces are equilateral triangles with unit edge lengths. First, we give an algebraic necessary condition when $gamma$ is a quadrilateral, thus giving a negative solution to Kenyons problem in full generality. We then prove that domes exist over a dense set of integral curves. Finally, we give an explicit construction of domes over all regular $n$-gons.
131 - Alexey Glazyrin 2019
The paper is devoted to coverings by translative homothets and illuminations of convex bodies. For a given positive number $alpha$ and a convex body $B$, $g_{alpha}(B)$ is the infimum of $alpha$-powers of finitely many homothety coefficients less tha n 1 such that there is a covering of $B$ by translative homothets with these coefficients. $h_{alpha}(B)$ is the minimal number of directions such that the boundary of $B$ can be illuminated by this number of directions except for a subset whose Hausdorff dimension is less than $alpha$. In this paper, we prove that $g_{alpha}(B)leq h_{alpha}(B)$, find upper and lower bounds for both numbers, and discuss several general conjectures. In particular, we show that $h_{alpha} (B) > 2^{d-alpha}$ for almost all $alpha$ and $d$ when $B$ is the $d$-dimensional cube, thus disproving the conjecture from Research Problems in Discrete Geometry by Brass, Moser, and Pach.
94 - Alexey Glazyrin 2019
In this paper, we use the linear programming approach to find new upper bounds for the moments of isotropic measures. These bounds are then utilized for finding lower packing bounds and energy bounds for projective codes. We also show that the obtain ed energy bounds are sharp for several infinite families of codes.
For a collection of $N$ unit vectors $mathbf{X}={x_i}_{i=1}^N$, define the $p$-frame energy of $mathbf{X}$ as the quantity $sum_{i eq j} |langle x_i,x_j rangle|^p$. In this paper, we connect the problem of minimizing this value to another optimizatio n problem, so giving new lower bounds for such energies. In particular, for $p<2$, we prove that this energy is at least $2(N-d) p^{-frac p 2} (2-p)^{frac {p-2} 2}$ which is sharp for $dleq Nleq 2d$ and $p=1$. We prove that for $1leq m<d$, a repeated orthonormal basis construction of $N=d+m$ vectors minimizes the energy over an interval, $pin[1,p_m]$, and demonstrate an analogous result for all $N$ in the case $d=2$. Finally, in connection, we give conjectures on these and other energies.
113 - Alexey Glazyrin 2017
A contact graph of a packing of closed balls is a graph with balls as vertices and pairs of tangent balls as edges. We prove that the average degree of the contact graph of a packing of balls (with possibly different radii) in $mathbb{R}^3$ is not gr eater than $13.92$. We also find new upper bounds for the average degree of contact graphs in $mathbb{R}^4$ and $mathbb{R}^5$.
We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither exten ds to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.
We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets.
140 - Alexey Glazyrin 2009
In this paper we prove a new asymptotic lower bound for the minimal number of simplices in simplicial dissections of $n$-dimensional cubes. In particular we show that the number of simplices in dissections of $n$-cubes without additional vertices is at least $(n+1)^{frac {n-1} 2}$.
Consider a polygon P and all neighboring circles (circles going through three consecutive vertices of P). We say that a neighboring circle is extremal if it is empty (no vertices of P inside) or full (no vertices of P outside). It is well known that for any convex polygon there exist at least two empty and at least two full circles, i.e. at least four extremal circles. In 1990 Schatteman considered a generalization of this theorem for convex polytopes in d-dimensional Euclidean space. Namely, he claimed that there exist at least 2d extremal neighboring spheres. In this paper, we show that there are certain gaps in Schattemans proof, which is based on the Bruggesser-Mani shelling method. We show that using this method it is possible to prove that there are at least d+1 extremal neighboring spheres. However, the existence problem of 2d extremal neighboring spheres is still open.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا