ترغب بنشر مسار تعليمي؟ اضغط هنا

60 - A. Saro , S. Bocquet , E. Rozo 2015
We cross-match galaxy cluster candidates selected via their Sunyaev-Zeldovich effect (SZE) signatures in 129.1 deg$^2$ of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey (DES) scien ce verification data. We identify 25 clusters between $0.1lesssim zlesssim 0.8$ in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness $lambda$-mass relation with the following function $langlelnlambda|M_{500}ranglepropto B_lambdaln M_{500}+C_lambdaln E(z)$ and use SPT-SZ cluster masses and RM richnesses $lambda$ to constrain the parameters. We find $B_lambda= 1.14^{+0.21}_{-0.18}$ and $C_lambda=0.73^{+0.77}_{-0.75}$. The associated scatter in mass at fixed richness is $sigma_{ln M|lambda} = 0.18^{+0.08}_{-0.05}$ at a characteristic richness $lambda=70$. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ selected clusters with RM counterparts is consistent with expectations and that the fraction of RM selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a sub-dominant population characterized by larger offsets. We also cross-match the RM catalog with SPT-SZ candidates below the official catalog threshold significance $xi=4.5$, using the RM catalog to provide optical confirmation and redshifts for additional low-$xi$ SPT-SZ candidates.In this way, we identify 15 additional clusters with $xiin [4,4.5]$ over the redshift regime explored by RM in the overlapping region between DES science verification data and the SPT-SZ survey.
We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical SPH simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: a) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; b) while all stars associated with the BCG were formed in its progenitors in the semi-analytic model used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; c) SPH satellites can loose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the semi-analytic model used in this study; d) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is not included in the semi-analytic model used in our study, as well as in most of the models discussed in the recent literature.
We present results from two high-resolution hydrodynamical simulations of proto-cluster regions at z~2.1. The simulations have been compared to observational results for the socalled Spiderweb galaxy system, the core of a putative proto-cluster regio n at z = 2.16, found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with M200~10^14 h-1 Msun (C1) and a rich cluster with M200~2x10^15 h-1 Msun (C2) at z = 0. The simulated proto-clusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy (BCG) of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared to the observed velocities. We argue that the Spiderweb complex resemble the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing AGN feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا