ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on density functional theory calculations and group theoretical analysis, we have studied NaLaMnWO$_{6}$ compound which has been recently synthesized [Phys. Rev. B 79, 224428 (2009)] and belongs to the $AABB{rm O}_{6}$ family of double perovski tes. At low temperature, the structure has monoclinic $P2_{1}$ symmetry, with layered ordering of the Na and La ions and rocksalt ordering of Mn and W ions. The Mn atoms show an antiferromagnetic (AFM) collinear spin ordering, and the compound has been reported as a potential multiferroic. By comparing the low symmetry structure with a parent phase of $P4/nmm$ symmetry, two distortion modes are found dominant. They correspond to MnO$_{6}$ and WO$_{6}$ octahedron textit{tilt} modes, often found in many simple perovskites. While in the latter these common tilting instabilities yield non-polar phases, in NaLaMnWO$_{6}$ the additional presence of the $A$-$A^{}$ cation ordering is sufficient to make these rigid unit modes as a source of the ferroelectricity. Through a trilinear coupling with the two unstable tilting modes, a significant polar distortion is induced, although the system has no intrinsic polar instability. The calculated electric polarization resulting from this polar distortion is as large as $sim$ 16 ${mu}{rm C/cm^{2}}$. Despite its secondary character, this polarization is coupled with the dominant tilting modes and its switching is bound to produce the switching of one of two tilts, enhancing in this way a possible interaction with the magnetic ordering. The transformation of common non-polar purely steric instabilities into sources of ferroelectricity through a controlled modification of the parent structure, as done here by the cation ordering, is a phenomenon to be further explored.
By performing accurate ab-initio density functional theory calculations, we study the role of $4f$ electrons in stabilizing the magnetic-field-induced ferroelectric state of DyFeO$_{3}$. We confirm that the ferroelectric polarization is driven by an exchange-strictive mechanism, working between adjacent spin-polarized Fe and Dy layers, as suggested by Y. Tokunaga [Phys. Rev. Lett, textbf{101}, 097205 (2008)]. A careful electronic structure analysis suggests that coupling between Dy and Fe spin sublattices is mediated by Dy-$d$ and O-$2p$ hybridization. Our results are robust with respect to the different computational schemes used for $d$ and $f$ localized states, such as the DFT+$U$ method, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional and the GW approach. Our findings indicate that the interaction between the $f$ and $d$ sublattice might be used to tailor ferroelectric and magnetic properties of multiferroic compounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا