ﻻ يوجد ملخص باللغة العربية
By performing accurate ab-initio density functional theory calculations, we study the role of $4f$ electrons in stabilizing the magnetic-field-induced ferroelectric state of DyFeO$_{3}$. We confirm that the ferroelectric polarization is driven by an exchange-strictive mechanism, working between adjacent spin-polarized Fe and Dy layers, as suggested by Y. Tokunaga [Phys. Rev. Lett, textbf{101}, 097205 (2008)]. A careful electronic structure analysis suggests that coupling between Dy and Fe spin sublattices is mediated by Dy-$d$ and O-$2p$ hybridization. Our results are robust with respect to the different computational schemes used for $d$ and $f$ localized states, such as the DFT+$U$ method, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional and the GW approach. Our findings indicate that the interaction between the $f$ and $d$ sublattice might be used to tailor ferroelectric and magnetic properties of multiferroic compounds.
This paper has been withdrawn by the author due to a crucial citing error in equation 4.
Ab-initio density functional theory (DFT) calculations of the relative stability of anatase and rutile polymorphs of TiO2 were carried using all-electron atomic orbitals methods with local density approximation (LDA). The rutile phase exhibited a mod
We study the Raman spectrum of CrI$_3$, a material that exhibits magnetism in a single-layer. We employ first-principles calculations within density functional theory to determine the effects of polarization, strain, and incident angle on the phonon
Elemental 2D materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using {it ab initio} calculations. Solving
Noncentrosymmetric metals are anticipated to exhibit a $dc$ photocurrent in the nonlinear optical response caused by the Berry curvature dipole in momentum space. Weyl semimetals (WSMs) are expected to be excellent candidates for observing these nonl