ترغب بنشر مسار تعليمي؟ اضغط هنا

126 - A. Papitto , D.F. Torres 2015
The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter, has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X -ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk, it emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumption that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk-magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray band. The average emission observed from PSR J1023+0038 is modelled by a disk in-flow with a rate of $(1-3)times10^{-11} M_{odot}/yr$, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that rather assume that a rotation-powered pulsar is turned on, showing how the spin down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.
We present the first detection of X-ray coherent pulsations from the transitional millisecond pulsar XSS J12270-4859, while it was in a sub-luminous accretion disk state characterized by a 0.5-10 keV luminosity of 5E33 erg/s (assuming a distance of 1 .4 kpc). Pulsations were observed by XMM-Newton at an rms amplitude of (7.7 +/- 0.5)% with a second harmonic stronger than the the fundamental frequency, and were detected when the source is neither flaring nor dipping. The most likely interpretation of this detection is that matter from the accretion disk was channelled by the neutron star magnetosphere and accreted onto its polar caps. According to standard disk accretion theory, for pulsations to be observed the mass in-flow rate in the disk was likely larger than the amount of plasma actually reaching the neutron star surface; an outflow launched by the fast rotating magnetosphere then probably took place, in agreement with the observed broad-band spectral energy distribution. We also report about the non-detection of X-ray pulsations during a recent observation performed while the source behaved as a rotationally-powered radio pulsar.
169 - A. Papitto , D. F. Torres , N. Rea 2014
Rotation-powered millisecond radio pulsars have been spun up to their present spin period by a $10^8$ - $10^9$ yr long X-ray-bright phase of accretion of matter and angular momentum in a low-to-intermediate mass binary system. Recently, the discovery of transitional pulsars that alternate cyclically between accretion and rotation-powered states on time scales of a few years or shorter, has demonstrated this evolutionary scenario. Here, we present a thorough statistical analysis of the spin distributions of the various classes of millisecond pulsars to assess the evolution of their spin period between the different stages. Accreting sources that showed oscillations exclusively during thermonuclear type I X-ray bursts (nuclear-powered millisecond pulsars) are found to be significantly faster than rotation-powered sources, while accreting sources that possess a magnetosphere and show coherent pulsations (accreting millisecond pulsars) are not. On the other hand, if accreting millisecond pulsars and eclipsing rotation-powered millisecond pulsars form a common class of transitional pulsars, these are shown to have a spin distribution intermediate between the faster nuclear-powered millisecond pulsars and the slower non-eclipsing rotation-powered millisecond pulsars. We interpret these findings in terms of a spin-down due to the decreasing mass-accretion rate during the latest stages of the accretion phase, and in terms of the different orbital evolutionary channels mapped by the various classes of pulsars. We summarize possible instrumental selection effects, showing that even if an unbiased sample of pulsars is still lacking, their influence on the results of the presented analysis is reduced by recent improvements in instrumentation and searching techniques.
XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field, to a state powered by matter in-fall, such as that recently observed from the transitional pulsar PSR J1023+0038. While the surface magnetic field of a typical NS in a LMXB is lower by more than four orders of magnitude than the much more intense fields of neutron stars accompanying high-mass binaries, the radius at which the matter in-flow is truncated in a NS-LMXB system is much lower. The magnetic field at the magnetospheric interface is then orders of magnitude larger at this interface, and as consequence, so is the power to accelerate electrons. We demonstrate that the cooling of the accelerated electron population takes place mainly through synchrotron interaction with the magnetic field permeating the interface, and through inverse Compton losses due to the interaction between the electrons and the synchrotron photons they emit. We found that self-synchrotron Compton processes can explain the high energy phenomenology of XSS J12270-4859.
99 - A. Papitto 2013
It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, an d bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron stars rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.
98 - A. Papitto 2011
We report on the detection of a 400.99018734(1) Hz coherent signal in the Rossi X-ray Timing Explorer light curves of the recently discovered X-ray transient, IGR J17498-2921. By analysing the frequency modulation caused by the orbital motion observe d between August 13 and September 8, 2011, we derive an orbital solution for the binary system with a period of 3.8432275(3) hr. The measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a lower limit of 0.17 Msun on the mass of the companion star, while an upper limit of 0.48 Msun is set by imposing that the companion star does not overfill its Roche lobe. We observe a marginally significant evolution of the signal frequency at an average rate of -(6.3 +/- 1.9)E-14 Hz/s. The low statistical significance of this measurement and the possible presence of timing noise hampers a firm detection of any evolution of the neutron star spin. We also present an analysis of the spectral properties of IGR J17498-2921 based on the observations performed by the Swift-X-ray Telescope and the RXTE-Proportional Counter Array between August 12 and September 22, 2011. During most of the outburst, the spectra are modeled by a power-law with an index Gamma~1.7-2, while values of ~3 are observed as the source fades into quiescence.
We present a timing solution for the 598.89 Hz accreting millisecond pulsar, IGR J00291+5934, using Rossi X-ray Timing Explorer data taken during the two outbursts exhibited by the source on 2008 August and September. We estimate the neutron star spi n frequency and we refine the system orbital solution. To achieve the highest possible accuracy in the measurement of the spin frequency variation experienced by the source in-between the 2008 August outburst and the last outburst exhibited in 2004, we re-analysed the latter considering the whole data set available. We find that the source spins down during quiescence at an average rate of { u}dot_{sd}=(-4.1 +/- 1.2)E-15 Hz/s. We discuss possible scenarios that can account for the long-term neutron star spin-down in terms of either magneto-dipole emission, emission of gravitational waves, and a propeller effect. If interpreted in terms of magneto-dipole emission, the measured spin down translates into an upper limit to the neutron star magnetic field, B<=3E+08 G, while an upper limit to the average neutron star mass quadrupole moment of Q<=2E+36 g cm^2 is set if the spin down is interpreted in terms of the emission of gravitational waves.
26 - A.Papitto , T.Di Salvo 2008
We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band w here the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km for a 1.4 Msun neutron star. The disc therefore appears truncated inside the corotation radius (31 km for SAX J1808.4-3658) in agreement with the fact that the source was still showing pulsations during the XMM-Newton observation.
172 - A.Papitto 2007
We perform a timing analysis on RXTE data of the accreting millisecond pulsar XTE J1751-305 observed during the April 2002 outburst. After having corrected for Doppler effects on the pulse phases due to the orbital motion of the source, we performed a timing analysis on the phase delays, which gives, for the first time for this source, an estimate of the average spin frequency derivative <nu_dot> = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting from the spin-up of the neutron star deriving a dynamical estimate of the mass accretion rate and comparing it with the one obtained from X-ray flux. Constraints on the distance to the source are discussed, leading to a lower limit of sim 6.7 kpc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا