ترغب بنشر مسار تعليمي؟ اضغط هنا

A propeller model for the sub-luminous disk state of the transitional millisecond pulsar PSR J1023+0038

127   0   0.0 ( 0 )
 نشر من قبل Alessandro Papitto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter, has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk, it emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumption that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk-magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray band. The average emission observed from PSR J1023+0038 is modelled by a disk in-flow with a rate of $(1-3)times10^{-11} M_{odot}/yr$, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that rather assume that a rotation-powered pulsar is turned on, showing how the spin down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

قيم البحث

اقرأ أيضاً

92 - T. Shahbaz 2018
We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r- and K_s-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switch ing (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anti-correlation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron stars magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled onto the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.
We report on the first continuous, 80 day optical monitoring of the transitional millisecond pulsar PSR J1023+0038 carried out in mid-2017 with Kepler in the K2 configuration, when an X-ray subluminous accretion disk was present in the binary. Flares lasting from minutes to 14 hr were observed for 15.6% of the time, which is a larger fraction than previously reported on the basis of X-ray and past optical observations, and more frequently when the companion was at the superior conjunction of the orbit. A sinusoidal modulation at the binary orbital period was also present with an amplitude of ~16%, which varied by a few percent over timescales of days, and with a maximum that took place 890 +/- 85 s earlier than the superior conjunction of the donor. We interpret these phenomena in terms of reprocessing of the X-ray emission by an asymmetrically heated companion star surface and/or a non-axisymmetric outflow possibly launched close to the inner Lagrangian point. Furthermore, the non-flaring average emission varied by up to ~ 40% over a time scale of days in the absence of correspondingly large variations of the irradiating X-ray flux. The latter suggests that the observed changes in the average optical luminosity might be due to variations of the geometry, size, and/or mass accretion rate in the outer regions of the accretion disk.
We report NuSTAR observations of the millisecond pulsar - low mass X-ray binary (LMXB) transition system PSR J1023+0038 from June and October 2013, before and after the formation of an accretion disk around the neutron star. Between June 10-12, a few days to two weeks before the radio disappearance of the pulsar, the 3-79 keV X-ray spectrum was well fit by a simple power law with a photon index of Gamma=1.17 +/-0.08 (at 90% confidence) with a 3-79 keV luminosity of 7.4+/-0.4 x 10^32 erg/s. Significant orbital modulation was observed with a modulation fraction of 36+/-10%. During the October 19-21 observation, the spectrum is described by a softer power law (Gamma=1.66+/-0.06) with an average luminosity of 5.8+/-0.2 x 10^33 erg/s and a peak luminosity of ~1.2 x 10^34 erg/s observed during a flare. No significant orbital modulation was detected. The spectral observations are consistent with previous and current multi-wavelength observations and show the hard X-ray power law extending to 79 keV without a spectral break. Sharp edged, flat bottomed `dips are observed with widths between 30-1000 s and ingress and egress time-scales of 30-60 s. No change in hardness ratio was observed during the dips. Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J1227.0-4859 and discuss possible interpretations based on the transitions in the inner disk.
We present a timing analysis of the transitional millisecond pulsar PSR J1023+0038 using observations taken between January 2018 and January 2020 with the high time resolution photon counter Aqueye+ mounted at the 1.82 m Copernicus telescope in Asiag o. We report the first measurement of the timing solution and the frequency derivative of PSR J1023+0038 based entirely on optical data. The spin-down rate of the pulsar is $(-2.53 pm 0.04) times 10^{-15}$ Hz$^2$, which is $sim$20% slower than that measured from the X-ray observations taken in 2013-2016 and $sim$5% faster than that measured in the radio band during the rotation-powered state.
We report on the first simultaneous XMM-Newton, NuSTAR and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا