ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new CRIRES spectroscopic observations of BrGamma in the nuclear region of the Circinus galaxy, obtained with the aim of measuring the black hole (BH) mass with the spectroastrometric technique. The Circinus galaxy is an ideal benchmark for the spectroastrometric technique given its proximity and secure BH measurement obtained with the observation of its nuclear H2O maser disk. The kinematical data have been analyzed both with the classical method based on the analysis of the rotation curves and with the new method developed by us and based on spectroastrometry. The classical method indicates that the gas disk rotates in the gravitational potential of an extended stellar mass distribution and a spatially unresolved mass of (1.7 +- 0.2) 10^7 Msun, concentrated within r < 7 pc. The new method is capable of probing gas rotation at scales which are a factor ~3.5 smaller than those probed by the rotation curve analysis. The dynamical mass spatially unresolved with the spectroastrometric method is a factor ~2 smaller, 7.9 (+1.4 -1.1) 10^6 Msun indicating that spectroastrometry has been able to spatially resolve the nuclear mass distribution down to 2 pc scales. This unresolved mass is still a factor ~4.5 larger than the BH mass measurement obtained with the H2O maser emission indicating that it has not been possible to resolve the sphere of influence of the BH. Based on literature data, this spatially unresolved dynamical mass distribution is likely dominated by molecular gas and it has been tentatively identified with the circum-nuclear torus which prevents a direct view of the central BH in Circinus. This mass distribution, with a size of ~2pc, is similar in shape to that of the star cluster of the Milky Way suggesting that a molecular torus, forming stars at a high rate, might be the earlier evolutionary stage of the nuclear star clusters which are common in late type spirals.
65 - A. Gnerucci 2010
This is the first in a series of papers in which we study the application of spectroastrometry in the context of gas kinematical studies aimed at measuring the mass of supermassive black holes. The spectroastrometrical method consists in measuring th e photocenter of light emission in different wavelength or velocity channels. In particular we explore the potential of spectroastrometry of gas emission lines in galaxy nuclei to constrain the kinematics of rotating gas disks and to measure the mass of putative supermassive black holes. By means of detailed simulations and test cases, we show that the fundamental advantage of spectroastrometry is that it can provide information on the gravitational potential of a galaxy on scales significantly smaller (~ 1/10) than the limit imposed by the spatial resolution of the observations. We then describe a simple method to infer detailed kinematical informations from spectroastrometry in longslit spectra and to measure the mass of nuclear mass concentrations. Such method can be applied straightforwardly to integral field spectra, which do not have the complexities due to a partial spatial covering of the source in the case of longslit spectra.
The application of the virial theorem to the Broad Line Region of Active Galactic Nuclei allows Black Hole mass estimates for large samples of objects at all redshifts. In a recent paper we showed that ionizing radiation pressure onto BLR clouds affe cts virial BH mass estimates and we provided empirically calibrated corrections. More recently, a new test of the importance of radiation forces has been proposed: the MBH-sigma relation has been used to estimate MBH for a sample of type-2 AGN and virial relations (with and without radiation pressure) for a sample of type-1 AGN extracted from the same parent population. The observed L/LEdd distribution based on virial BH masses is in good agreement with that based on MBH-sigma only if radiation pressure effects are negligible, otherwise significant discrepancies are observed. In this paper we investigate the effects of intrinsic dispersions associated to the virial relations providing MBH, and we show that they explain the discrepancies between the observed L/LEdd distributions of type-1 and type-2 AGN. These discrepancies in the L/LEdd distributions are present regardless of the general importance of radiation forces, which must be negligible only for a small fraction of sources with large L/LEdd. Average radiation pressure corrections should then be applied in virial MBH estimators until their dependence on observed source physical properties has been fully calibrated. Finally, the comparison between MBH and L/LEdd distributions derived from sigma-based and virial estimators can constrain the variance of BLR physical properties in AGN.
The application of the virial theorem provides a tool to estimate supermassive black hole (BH) masses in large samples of active galactic nuclei (AGN) with broad emission lines at all redshifts and luminosities, if the broad line region (BLR) is grav itationally bound. In this paper we discuss the importance of radiation forces on BLR clouds arising from the deposition of momentum by ionizing photons. Such radiation forces counteract gravitational ones and, if not taken into account, BH masses can be severely underestimated. We provide virial relations corrected for the effect of radiation pressure and we discuss their physical meaning and application. If these corrections to virial masses, calibrated with low luminosity objects, are extrapolated to high luminosities then the BLRs of most quasars might be gravitationally unbound. The importance of radiation forces in high luminosity objects must be thoroughly investigated to assess the reliability of quasar BH masses.
We consider the effect of radiation pressure from ionizing photons on black hole (BH) mass estimates based on the application of the virial theorem to broad emission lines in AGN spectra. BH masses based only on the virial product V^2R and neglecting the effect of radiation pressure can be severely underestimated especially in objects close to the Eddington limit. We provide an empirical calibration of the correction for radiation pressure and we show that it is consistent with a simple physical model in which BLR clouds are optically thick to ionizing radiation and have average column densities of NH~10^23 cm^-2. This value is remarkably similar to what is required in standard BLR photoionization models to explain observed spectra. With the inclusion of radiation pressure the discrepancy between virial BH masses based on single epoch spectra and on reverberation mapping data drops from 0.4 to 0.2 dex rms. The use of single epoch observations as surrogates of reverberation mapping campaigns can thus provide more accurate BH masses than previously thought. Finally, we show that Narrow Line Seyfert 1 (NLS1) galaxies have apparently low BH masses because they are radiating close to their Eddington limit. After the radiation pressure correction, NLS1 galaxies have BH masses similar to other broad line AGNs and follow the same MBH-sigma/L relations as other active and normal galaxies. Radiation forces arising from ionizing photon momentum deposition constitute an important physical effect which must be taken into account when computing virial BH masses.
We present results from a kinematical study of the gas in the nucleus of a sample of three LINER galaxies, obtained from archival HST/STIS long-slit spectra. We found that, while for the elliptical galaxy NGC 5077, the observed velocity curves are co nsistent with gas in regular rotation around the galaxys center, this is not the case for the two remaining objects. By modeling the surface brightness distribution and rotation curve from the emission lines in NGC 5077, we found that the observed kinematics of the circumnuclear gas can be accurately reproduced by adding to the stellar mass component a black hole mass of M_bh = 6.8 (-2.8,+4.3) 10**8 M_sun (uncertainties at a 1 sigma level); the radius of its sphere of influence (R_sph ~ 0.34) is well-resolved at the HST resolution. The BH mass estimate in NGC 5077 is in fairly good agreement with both the M_bh-M_bul (with an upward scatter of ~ 0.4 dex) and M_bh-sigma correlations (with an upward scatter of 0.5 dex in the Tremaine et al. form and essentially no scatter using the Ferrarese et al. form) and provides further support for the presence of a connection between the ``residuals from the M_bh-sigma correlation and the bulge effective radius. This indicates the presence of a black holes ``fundamental plane in the sense that a combination of at least sigma and R_e drives the correlations between M_bh and host bulge properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا