ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a systematic coherent X-ray pulsation search in eleven low mass X-ray binaries (LMXBs). We select a relatively broad variety of LMXBs, including persistent and transient sources and spanning orbital periods between 0.3 and 17 hours. We use about 3.6 Ms of data collected by the Rossi X-Ray Timing Explorer (RXTE) and XMM-Newton and apply a semi-coherent search strategy to look for weak and persistent pulses in a wide spin frequency range. We find no evidence for X-ray pulsations in these systems and consequently set upper limits on the pulsed sinusoidal semi-amplitude between 0.14% and 0.78% for ten outbursting/persistent LMXBs and 2.9% for a quiescent system. These results suggest that weak pulsations might not form in (most) non-pulsating LMXBs.
132 - A. Patruno 2017
The low mass X-ray binary (LMXB) IGR J17480-2446 is an 11 Hz accreting pulsar located in the core of the globular cluster Terzan 5. This is a mildly recycled accreting pulsar with a peculiar evolutionary history since its total age has been suggested to be less than a few hundred Myr, despite the very old age of Terzan 5 (~12 Gyr). Solving the origin of this age discrepancy might be very valuable because it can reveal why systems like IGR J17480-2446 are so rare in our Galaxy. We have performed numerical simulations (dynamical and binary evolution) to constrain the evolutionary history of IGR J17480-2446 . We find that the binary has a high probability to be the result of close encounters, with a formation mechanism compatible with the tidal capture of the donor star. The result reinforces the hypothesis that IGR J17480-2446 is a binary that started mass transfer in an exceptionally recent time. We also show that primordial interacting binaries in the core of Terzan 5 are strongly affected by a few hundred close encounters (fly-by) during their lifetime. This effect might delay, accelerate or even interrupt the Roche lobe overflow (RLOF) phase. Our calculations show that systems of this kind can form exclusively in dense environments like globular clusters.
56 - A. Patruno , R. Wijnands 2017
HETE J1900.1--2455 is a peculiar accreting millisecond X-ray pulsar (AMXP) because it has shown intermittent pulsations after 22 days from the beginning of its outburst. The origin of intermittent pulses in accreting systems remains to be understood. To better investigate the phenomenon of intermittent pulsations here we present an analysis of 7 years of X-ray data collected with the Rossi X-Ray Timing Explorer and focus on the aperiodic variability. We show that the power spectral components follow the same frequency correlations as the non-pulsating atoll sources. We also study the known kHz QPO and we show that it reaches a frequency of up to approximately 900 Hz, which is the highest frequency observed for any kHz QPO in an AMXP. We also report the discovery of a new kHz QPO at ~500 Hz. Finally, we discuss in further detail the known pulse phase drift observed in this source, which so far has no explanation. We interpret the behavior of the aperiodic variability, the high frequency of the 900 kHz QPO and the presence of the pulse drift as three independent pieces of evidence for a very weak neutron star magnetosphere in HETE J1900.1--2455.
71 - A. Patruno 2017
Of the roughly 3000 neutron stars known, only a handful have sub-stellar companions. The most famous of these are the low-mass planets around the millisecond pulsar B1257+12. New evidence indicates that observational biases could still hide a wide va riety of planetary systems around most neutron stars. We consider the environment and physical processes relevant to neutron star planets, in particular the effect of X-ray irradiation and the relativistic pulsar wind on the planetary atmosphere. We discuss the survival time of planet atmospheres and the planetary surface conditions around different classes of neutron stars, and define a neutron star habitable zone. Depending on as-yet poorly constrained aspects of the pulsar wind, both Super-Earths around B1257+12 could lie within its habitable zone.
We study the current sample of rapidly rotating neutron stars in both accreting and non-accreting binaries in order to determine whether the spin distribution of accreting neutron stars in low-mass X-ray binaries can be reconciled with current accret ion torque models. We perform a statistical analysis of the spin distributions and show that there is evidence for two sub-populations among low-mass X-ray binaries, one at relatively low spin frequency, with an average of ~300 Hz and a broad spread, and a peaked population at higher frequency with average spin frequency of ~575 Hz. We show that the two sub-populations are separated by a cut-point at a frequency of ~540 Hz. We also show that the spin frequency of radio millisecond pulsars does not follow a log-normal distribution and shows no evidence for the existence of distinct sub-populations. We discuss the uncertainties of different accretion models and speculate that either the accreting neutron star cut-point marks the onset of gravitational waves as an efficient mechanism to remove angular momentum or some of the neutron stars in the fast sub-population do not evolve into radio millisecond pulsars.
271 - A. Patruno 2016
The accreting millisecond pulsars IGR J00291+5934 and SAX J1808.4-3658 are two compact binaries with very similar orbital parameters. The latter has been observed to evolve on a very short timescale of ~70 Myr which is more than an order of magnitude shorter than expected. There is an ongoing debate on the possibility that the pulsar spin-down power ablates the companion generating large amount of mass-loss in the system. It is interesting therefore to study whether IGR J00291+5934 does show a similar behaviour as its twin system SAX J1808.4-3658. In this work we present the first measurement of the orbital period derivative of IGR J00291+5934. By using XMM-Newton data recorded during the 2015 outburst and adding the previous results of the 2004 and 2008 outbursts, we are able to measure a 90% confidence level upper limit for the orbital period derivative of -5x10^-13<Pb_dot<6x10^-13. This implies that the binary is evolving on a timescale longer than ~0.5 Gyr, which is compatible with the expected timescale of mass transfer driven by angular momentum loss via gravitational radiation. We discuss the scenario in which the power loss from magnetic dipole radiation of the neutron star is hitting the companion star. If this model is applied to SAX J1808.4-3658 then the difference in orbital behavior can be ascribed to a different efficiency for the conversion of the spin-down power into energetic relativistic pulsar wind and X-ray/gamma-ray radiation for the two pulsars, with IGR J00291+5934 requiring an extraordinarily low efficiency of less than 5% to explain the observations. Alternatively, the donor in IGR J00291+5934 is weakly/not magnetized which would suppress the possibility of generating mass-quadrupole variations.
The accreting millisecond X-ray pulsar (AMXP) SAX J1808.4-3658, shows a peculiar orbital evolution that proceeds at a much faster pace than predicted by conservative binary evolution models. It is important to identify the underlying mechanism respon sible for this behavior because it can help to understand how this system evolves. It has also been suggested that, when in quiescence, SAX J1808.4-3658 turns on as a radio pulsar, a circumstance that might provide a link between AMXPs and black-widow radio pulsars. In this work we report the results of a deep radio pulsation search at 2 GHz using the Green Bank Telescope in August 2014 and an X-ray monitoring of the 2015 outburst with Chandra, Swift, and INTEGRAL. In particular, we present the X-ray timing analysis of a 30-ks Chandra observation executed during the 2015 outburst. We detect no radio pulsations, and place the strongest limit to date on the pulsed radio flux density of any AMXP. We also find that the orbit of SAX J1808.4-3658 continues evolving at a fast pace and we compare it to the bhevior of other accreting and non-accreting binaries. We discuss two scenarios: either the neutron star has a large moment of inertia (I>1.7x10^45 g cm^2) and is ablating the donor (by using its spin-down power) thus generating mass-loss with an efficiency of 40% or the donor star is undergoing quasi-cyclic variations due to a varying mass-quadrupole induced by either a strong (1 kG) field or by some unidentified mechanism probably linked to irradiation.
294 - A. Patruno 2015
The accreting millisecond X-ray pulsar SAX J1808.4--3658 shows peculiar low luminosity states known as reflares after the end of the main outburst. During this phase the X-ray luminosity of the source varies by up to three orders of magnitude in less than 1-2 days. The lowest X-ray luminosity observed reaches a value of ~1e32 erg/s, only a factor of a few brighter than its typical quiescent level. We investigate the 2008 and 2005 reflaring state of SAX J1808.4-3658 to determine whether there is any evidence for a change in the accretion flow with respect to the main outburst. We perform a multiwavelength photometric and spectral study of the 2005 and 2008 reflares with data collected during an observational campaign covering the near-infrared, optical, ultra-violet and X-ray band. We find that the NIR/optical/UV emission, expected to some from the outer accretion disk shows variations in luminosity which are 1--2 orders of magnitude shallower than in X-rays. The X-ray spectral state observed during the reflares does not change substantially with X-ray luminosity indicating a rather stable configuration of the accretion flow. We investigate the most likely configuration of the innermost regions of the accretion flow and we infer an accretion disk truncated at or near the co-rotation radius. We interpret these findings as due to either a strong outflow (due to a propeller effect) or a trapped disk (with limited/no outflow) in the inner regions of the accretion flow.
92 - A. Patruno 2013
PSR J1023+0038 is an exceptional system for understanding how slowly rotating neutron stars are spun up to millisecond rotational periods through accretion from a companion star. Observed as a radio pulsar from 2007-2013, optical data showed that the system had an accretion disk in 2000/2001. Starting at the end of 2013 June, the radio pulsar has become undetectable, suggesting a return to the previous accretion-disk state, where the system more closely resembles an X-ray binary. In this Letter we report the first targeted X-ray observations ever performed of the active phase and complement them with UV/Optical and radio observations collected in 2013 October. We find strong evidence that indeed an accretion disk has recently formed in the system and we report the detection of fast X-ray changes spanning about two orders of magnitude in luminosity. No radio pulsations are seen during low flux states in the X-ray light-curve or at any other times.
124 - A. Patruno 2013
The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well -understood, particularly at low accretion rates (the so-called ``propeller regime). This is due in part to the lack of clear observational diagnostics to constrain the physics of the disk-field interaction. Here we associate the strong ~1 Hz modulation seen in the accreting millisecond X-ray pulsar NGC 6440 X-2 with an instability that arises when the inner edge of the accretion disk is close to the corotation radius (where the stellar rotation rate matches the Keplerian speed in the disk). A similar modulation has previously been observed in another accreting millisecond X-ray pulsar (SAX J1808.4-3658) and we suggest that the two phenomena are related and that this may be a common phenomenon among other magnetized systems. Detailed comparisons with theoretical models suggest that when the instability is observed, the interaction region between the disk and the field is very narrow -- of the order of 1 km. Modelling further suggests that there is a transition region (~1-10 km) around the corotation radius where the disk-field torque changes sign from spin up to spin down. This is the first time that a direct observational constraint has been placed on the width of the disk-magnetosphere interaction region, in the frame of the trapped-disk instability model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا