ﻻ يوجد ملخص باللغة العربية
We present a systematic coherent X-ray pulsation search in eleven low mass X-ray binaries (LMXBs). We select a relatively broad variety of LMXBs, including persistent and transient sources and spanning orbital periods between 0.3 and 17 hours. We use about 3.6 Ms of data collected by the Rossi X-Ray Timing Explorer (RXTE) and XMM-Newton and apply a semi-coherent search strategy to look for weak and persistent pulses in a wide spin frequency range. We find no evidence for X-ray pulsations in these systems and consequently set upper limits on the pulsed sinusoidal semi-amplitude between 0.14% and 0.78% for ten outbursting/persistent LMXBs and 2.9% for a quiescent system. These results suggest that weak pulsations might not form in (most) non-pulsating LMXBs.
A recent study of a small sample of X-ray binaries (XRBs) suggests a significant softening of spectra of neutron star (NS) binaries as compared to black hole (BH) binaries in the luminosity range 10$^{34}$ - 10$^{37}$ erg/s. This softening is quantif
There is still 10-20% uncertainty on the neutron star (NS) mass-radius relation. These uncertainties could be reduced by an order of magnitude through an unambiguous measure of M/R from the surface redshift of a narrow line, greatly constraining the
In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible
Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts, during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient
We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) at a luminosity between ~ 10^{36-37} erg s^{-1}. When fitting the Swift X-ray spectra