ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - Alastair Basden 2015
In recent years, detectors with sub-electron readout noise have been used very effectively in astronomical adaptive optics systems. Here, we compare readout noise models for the two key faint flux level detector technologies that are commonly used: E MCCD and scientific CMOS (sCMOS) detectors. We find that in almost all situations, EMCCD technology is advantageous, and that the commonly used simplified model for EMCCD readout is appropriate. We also find that the commonly used simple models for sCMOS readout noise are optimistic, and recommend that a proper treatment of the sCMOS rms readout noise probability distribution should be considered during instrument performance modelling and development.
72 - Alastair Basden 2015
The forthcoming Extremely Large Telescopes all require adaptive optics systems for their successful operation. The real-time control for these systems becomes computationally challenging, in part limited by the memory bandwidths required for wavefron t reconstruction. We investigate new POWER8 processor technologies applied to the problem of real-time control for adaptive optics. These processors have a large memory bandwidth, and we show that they are suitable for operation of first-light ELT instrumentation, and propose some potential real-time control system designs. A CPU-based real-time control system significantly reduces complexity, improves maintainability, and leads to increased longevity for the real-time control system.
70 - Alastair Basden 2015
We investigate the improvements in Shack-Hartmann wavefront sensor image processing that can be realised using total variation minimisation techniques to remove noise from these images. We perform Monte-Carlo simulation to demonstrate that at certain signal-to-noise levels, sensitivity improvements of up to one astronomical magnitude can be realised. We also present on-sky measurements taken with the CANARY adaptive optics system that demonstrate an improvement in performance when this technique is employed, and show that this algorithm can be implemented in a real-time control system. We conclude that total variation minimisation can lead to improvements in sensitivity of up to one astronomical magnitude when used with adaptive optics systems.
A multi-object spectrograph on the forthcoming European Extremely Large Telescope will be required to operate with good sky coverage. Many of the interesting deep cosmological fields were deliberately chosen to be free of bright foreground stars, and therefore are potentially challenging for adaptive optics (AO) systems. Here we investigate multi-object AO performance using sub-fields chosen at random from within the Great Observatories Origins Deep Survey (GOODS)-S field, which is the worst case scenario for five deep fields used extensively in studies of high-redshift galaxies. Our AO system model is based on that of the proposed MOSAIC instrument but our findings are equally applicable to plans for multi-object spectroscopy on any of the planned Extremely Large Telescopes. Potential guide stars within these sub-fields are identified and used for simulations of AO correction. We achieve ensquared energies within 75~mas of between 25-35% depending on the sub-field, which is sufficient to probe sub-kpc scales in high-redshift galaxies. We also investigate the effect of detector readout noise on AO system performance, and consider cases where natural guide stars are used for both high-order and tip-tilt-only AO correction. We also consider how performance scales with ensquared energy box size. In summary, the expected AO performance is sufficient for a MOSAIC-like instrument, even within deep fields characterised by a lack of bright foreground stars.
Multi-object adaptive optics (MOAO) has been demonstrated by the CANARY instrument on the William Herschel Telescope. However, for proposed MOAO systems on the next generation Extremely Large Telescopes, such as EAGLE, many challenges remain. Here we investigate requirements that MOAO operation places on deformable mirrors (DMs) using a full end-to-end Monte-Carlo AO simulation code. By taking into consideration a prior global ground-layer (GL) correction, we show that actuator density for the MOAO DMs can be reduced with little performance loss. We note that this reduction is only possible with the addition of a GL DM, whose order is greater than or equal to that of the original MOAO mirrors. The addition of a GL DM of lesser order does not affect system performance (if tip/tilt star sharpening is ignored). We also quantify the maximum mechanical DM stroke requirements (3.5 $mu$m desired) and provide tolerances for the DM alignment accuracy, both lateral (to within an eighth of a sub-aperture) and rotational (to within 0.2$^circ$). By presenting results over a range of laser guide star asterism diameters, we ensure that these results are equally applicable for laser tomographic AO systems. We provide the opportunity for significant cost savings to be made in the implementation of MOAO systems, resulting from the lower requirement for DM actuator density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا