ﻻ يوجد ملخص باللغة العربية
In recent years, detectors with sub-electron readout noise have been used very effectively in astronomical adaptive optics systems. Here, we compare readout noise models for the two key faint flux level detector technologies that are commonly used: EMCCD and scientific CMOS (sCMOS) detectors. We find that in almost all situations, EMCCD technology is advantageous, and that the commonly used simplified model for EMCCD readout is appropriate. We also find that the commonly used simple models for sCMOS readout noise are optimistic, and recommend that a proper treatment of the sCMOS rms readout noise probability distribution should be considered during instrument performance modelling and development.
In typical adaptive optics applications, the atmospheric residual turbulence affects the wavefront sensor response decreasing its sensitivity. On the other hand, wavefront sensors are generally calibrated in diffraction limited condition, and, so, th
While adaptive optical systems are able to remove moderate wavefront distortions in scintillated optical beams, phase singularities that appear in strongly scintillated beams can severely degrade the performance of such an adaptive optical system. Th
We investigate the improvements in Shack-Hartmann wavefront sensor image processing that can be realised using total variation minimisation techniques to remove noise from these images. We perform Monte-Carlo simulation to demonstrate that at certain
Over the last few years increasing consideration has been given to the study of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared astronomical observations from the ground. A poss
Real-time seeing and outer scale estimation at the location of the focus of a telescope is fundamental for the adaptive optics systems dimensioning and performance prediction, as well as for the operational aspects of instruments. This study attempts