ترغب بنشر مسار تعليمي؟ اضغط هنا

143 - A. Ohnishi , S. Cho , T. Furumoto 2013
We discuss the exotic hadron structure and hadron-hadron interactions in view of heavy ion collisions. First, we demonstrate that a hadronic molecule with a large spatial size would be produced more abundantly in the coalescence model compared with t he statistical model result. Secondly, we constrain the Lambda-Lambda interaction by using the recently measured Lambda-Lambda correlation data. We find that the RHIC-STAR data favor the Lambda-Lambda scattering parameters in the range 1/a_0 <= -0.8 fm^{-1} and r_{eff} >= 3 fm.
We discuss the QCD phase diagram from two different point of view. We first investigate the phase diagram structure in the strong coupling lattice QCD with Polyakov loop effects, and show that the the chiral and Z_{N_c} deconfinement transition bound aries deviate at finite mu as suggested from large N_c arguments. Next we discuss the possibility to probe the QCD critical point during prompt black hole formation processes. The thermodynamical evolution during the black hole formation would result in quark matter formation, and the critical point in isospin asymmetric matter may be swept. (T,mu_B) region probed in heavy-ion collisions and the black hole formation processes covers most of the critical point locations predicted in recent lattice Monte-Carlo simulations and chiral effective models.
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtai ned by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresponds to the point-splitting mesonic composite. Fermion determinant with this mean field under the anti-periodic boundary condition gives rise to a term which interpolates the effective potentials in the previously proposed zero and finite temperature mean field treatments. While the shift of the transition temperature at zero chemical potential is in the desirable direction and the phase boundary shape is improved, we find that the effects are too large to be compatible with the MDP simulation results.
Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affecte d by their structures. Using the coalescence model, we find that the exotic hadron yield relative to the statistical model result is typically an order of magnitude smaller for a compact multi-quark state, and larger by a factor of two or more for a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured at RHIC and LHC.
We discuss the possibility to probe the QCD critical point during the dynamical black hole formation from a gravitational collapse of a massive star, where the temperature and the baryon chemical potential become as high as T ~ 90 MeV and $mu_B$ ~ 13 00 MeV. Comparison with the phase boundary in chiral effective models suggests that quark matter is likely to be formed before the horizon is formed. Furthermore, the QCD critical point may be probed during the black hole formation. The critical point is found to move in the lower temperature direction in asymmetric nuclear matter, and in some of the chiral models it is found to be in the reachable region during the black hole formation processes.
We present sets of equation of state (EOS) of nuclear matter including hyperons using an SU_f(3) extended relativistic mean field (RMF) model with a wide coverage of density, temperature, and charge fraction for numerical simulations of core collapse supernovae. Coupling constants of Sigma and Xi hyperons with the sigma meson are determined to fit the hyperon potential depths in nuclear matter, U_Sigma(rho_0) ~ +30 MeV and U_Xi(rho_0) ~ -15 MeV, which are suggested from recent analyses of hyperon production reactions. At low densities, the EOS of uniform matter is connected with the EOS by Shen et al., in which formation of finite nuclei is included in the Thomas-Fermi approximation. In the present EOS, the maximum mass of neutron stars decreases from 2.17 M_sun (Ne mu) to 1.63 M_sun (NYe mu) when hyperons are included. In a spherical, adiabatic collapse of a 15$M_odot$ star by the hydrodynamics without neutrino transfer, hyperon effects are found to be small, since the temperature and density do not reach the region of hyperon mixture, where the hyperon fraction is above 1 % (T > 40 MeV or rho_B > 0.4 fm^{-3}).
We examine the Brown-Rho scaling for meson masses in the strong coupling limit of lattice QCD with one species of staggered fermion. Analytical expression of meson masses is derived at finite temperature and chemical potential. We find that meson mas ses are approximately proportional to the equilibrium value of the chiral condensate, which evolves as a function of temperature and chemical potential.
We study the phase diagram of quark matter and nuclear properties based on the strong coupling expansion of lattice QCD. Both of baryon and finite coupling correction are found to have effects to extend the hadron phase to a larger mu direction relat ive to Tc. In a chiral RMF model with logarithmic sigma potential derived in the strong coupling limit of lattice QCD, we can avoid the chiral collapse and normal and hypernuclei properties are well described.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا