ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the magnetization dynamics in circular Permalloy dots with spatially separated magnetic vortices interconnected by domain walls (double vortex state). We identify a novel type of quasi one-dimensional (1D) localised spin wave modes con fined along domain walls, connecting each of two vortex cores with two edge half-antivortices. Variation of the mode eigenfrequencies with the dot size is in quantitative agreement with the developed model, which considers a dipolar origin of the localized 1D spin waves or so-called Winters magnons [J.M. Winter, Phys.Rev. 124, 452 (1961)]. These spin waves are analogous to the displacement waves of strings, and could be excited in a wide class of patterned magnetic nanostructures possessing domain walls, namely in triangular, square, circular or elliptic magnetic dots.
Alloying Fe electrodes with V, through reduced FeV/MgO interface mismatch in epitaxial magnetic tunnel junctions with MgO barriers, notably suppresses both nonmagnetic (parallel) and magnetic (antiparallel) state 1/f noise and enhances tunnelling mag netoresistance (TMR). A comparative study of the room temperature electron transport and low frequency noise in Fe1-xVx/MgO/Fe and Fe/MgO/Fe1-xVx MTJs with 0 <= x <= 0.25 reveals that V doping of the bottom electrode for x < 0.1 reduces in nearly 2 orders of magnitude the normalized nonmagnetic and magnetic 1/f noise. We attribute the enhanced TMR and suppressed 1/f noise to strongly reduced misfit and dislocation density.
62 - A.A. Awad 2010
We report on detailed broadband ferromagnetic resonance measurements of azimuthal and radial spin wave excitations in circular Permalloy dots in the vortex ground state. Dots with aspect ratio (Beta =height over radius) varied from 0.03 to 0.1 were e xplored. We found that for Beta exceeding approximately 0.05, variation of the spin wave eigenfrequencies with Beta deviates from the predicted dependence. The frequency splitting of two lowest azimuthal modes was observed. The experimentally observed dependence of the frequency splitting on beta was reasonably well described by dynamic splitting model accounting the spin-waves and, vortex gyrotropic mode interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا