ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new, better-constrained asteroseismic analysis of the helium-atmosphere (DB) white dwarf discovered in the field of view of the original Kepler mission. Observations obtained over the course of two years yield at least seven independent modes, two more than were found in the discovery paper for the object. With several triplets and doublets, we are able to fix the $ell$ and $rm{m}$ identification of several modes before performing the fitting, greatly reducing the number of assumptions we must make about mode identification. We find a very thin helium layer for this relatively hot DB, which adds evidence to the hypothesis that helium diffuses outward during DB cooling. At least a few of the modes appear to be stable on evolutionary timescales and could allow us to obtain a measurement of the rate of cooling with monitoring of the star over the course of the next few years with ground-based follow-up.
We present an asteroseismic analysis of the helium atmosphere white dwarf (a DBV) recently found in the field of view of the Kepler satellite. We analyze the 5-mode pulsation spectrum that was produced based on one month of high cadence Kepler data. The pulsational characteristics of the star and the asteroseismic analysis strongly suggest that the star is hotter (29200 K) than the 24900 K suggested by model fits to the low S/N survey spectrum of the object. This result has profound and exciting implications for tests of the Standard Model of particle physics. Hot DBVs are expected to lose over half of their energy through the emission of plasmon neutrinos. Continuous monitoring of the star with the Kepler satellite over the course of 3 to 5 years is not only very likely to yield more modes to help constrain the asteroseismic fits, but also allow us to obtain a rate of change of any stable mode and therefore measure the emission of plasmon neutrinos.
The asteroseismic analysis of white dwarfs allows us to peer below their photospheres and determine their internal structure. At ~ 28,000 K EC20058-5234 is the hottest known pulsating helium atmosphere white dwarf. As such, it constitutes an importan t link in the evolution of white dwarfs down the cooling track. It is also astrophysically interesting because it is at a temperature where white dwarfs are expected to cool mainly through the emission of plasmon neutrinos. In the present work, we perform an asteroseismic analysis of EC20058-5234 and place the results in the context of stellar evolution and time dependent diffusion calculations. We use a parallel genetic algorithm complemented with targeted grid searches to find the models that fit the observed periods best. Comparing our results with similar modeling of EC20058-5234s cooler cousin CBS114, we find a helium envelope thickness consistent with time dependent diffusion calculations and obtain a precise mode identification for EC20058-5234.
136 - A. Bischoff-Kim 2010
We present the results of the asteroseismological analysis of two rich DAVs, G38-29 and R808, recent targets of the Whole Earth Telescope. 20 periods between 413 s and 1089 s were found in G38-29s pulsation spectrum, while R808 is an even richer puls ator, with 24 periods between 404 s and 1144 s. Traditionally, DAVs that have been analyzed asteroseismologically have had fewer than half a dozen modes. Such a large number of modes presents a special challenge to white dwarf asteroseismology, but at the same time has the potential to yield a detailed picture of the interior chemical make-up of DAVs.We explore this possibility by varying the core profiles as well as the layer masses.We use an iterative grid search approach to find best fit models for G38-29 and R808 and comment on some of the intricacies of fine grid searches in white dwarf asteroseismology.
We now have a good measurement of the cooling rate of G117-B15A. In the near future, we will have equally well determined cooling rates for other pulsating white dwarfs, including R548. The ability to measure their cooling rates offers us a unique wa y to study weakly interacting particles that would contribute to their cooling. Working toward that goal, we perform a careful asteroseismological analysis of G117-B15A and R548. We study them side by side because they have similar observed properties. We carry out a systematic, fine grid search for best fit models to the observed period spectra of those stars. We freely vary 4 parameters: the effective temperature, the stellar mass, the helium layer mass, and the hydrogen layer mass. We identify and quantify a number of uncertainties associated with our models. Based on the results of that analysis and fits to the periods observed in R548 and G117-B15A, we clearly define the regions of the 4 dimensional parameter space ocuppied by the best fit models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا