ترغب بنشر مسار تعليمي؟ اضغط هنا

The two point correlation function of the CMB temperature anisotropies is generally assumed to be statistically isotropic (SI). Deviations from this assumption could be traced to physical or observational artefacts and systematic effects. Measurement of non-vanishing power in the BipoSH spectra is a standard statistical technique to search for isotropy violations. Although this is a neat tool allowing a blind search for SI violations in the CMB sky, it is not easy to discern the cause of isotropy violation using this measure. In this article, we propose a novel technique of constructing orthogonal BipoSH estimators, which can be used to discern between models of isotropy violation.
We provide a detailed treatment and comparison of the weak lensing effects due to large-scale structure (LSS), or scalar density perturbations and those due to gravitational waves(GW) or tensor perturbations, on the temperature and polarization power spectra of the Cosmic Microwave Background (CMB). We carry out the analysis both in real space by using the correlation function method, as well as in the spherical harmonic space. We find an intriguing similarity between the lensing kernels associated with LSS lensing and GW lensing. It is found that the lensing kernels only differ in relative negative signs and their form is very reminiscent of even and odd parity bipolar spherical harmonic coefficients. Through a numerical study of these lensing kernels, we establish that lensing due to GW is more efficient at distorting the CMB spectra as compared to LSS lensing, particularly for the polarization power spectra. Finally we argue that the CMB B-mode power spectra measurements can be used to place interesting constraints on GW energy densities.
A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We find that the lensing due to gravitational waves(GW) is more efficient as compared to lensing due to scalar density perturb ations. Though the effect of lensing due to GW is found to effect all the four CMB power spectra, its effect is most prominently seen in the CMB polarization power spectra. This suggests that the measurements of the CMB angular power spectra could be used to constraining the energy density ($Omega_{GW}$) of the SGBW. In our analysis we find that the most stringent constraints on $Omega_{GW}$ are due to measurements of the angular power spectra of CMB temperature anisotropies. We show that in the future it will be possible to place more stringent bounds on $Omega_{GW}$ using improved upper limits or detections of the angular power spectra of the B-modes of CMB polarization at large multipoles.
Statistical isotropy (SI) has been one of the simplifying assumptions in cosmological model building. Experiments like WMAP and PLANCK are attempting to test this assumption by searching for specific signals in the Cosmic Microwave Background (CMB) t wo point correlation function. Modifications to this correlation function due to gravitational lensing by the large scale structure (LSS) surrounding us have been ignored in this context. Gravitational lensing will induce signals which mimic isotropy violation even in an isotropic universe. The signal detected in the Bipolar Spherical Harmonic (BipoSH) coefficients $A^{20}_{ll}$ by the WMAP team may be explained by accounting for the lensing modifications to these coefficients. Further the difference in the amplitude of the signal detected in the V-band and W-band maps can be explained by accounting for the differences in the designed angular sensitivity of the instrumental beams. The arguments presented in this article have crucial implications for SI violation studies. Constraining SI violation will only be possible by complementing CMB data sets with all sky measurements of the large scale dark matter distribution. Till that time, the signal detected in the BipoSH coefficients from WMAP-7 could also be yet another suggested evidence of strong deviations from the standard $Lambda$CDM cosmology based on homogeneous and isotropic FRW models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا