ترغب بنشر مسار تعليمي؟ اضغط هنا

We construct steering inequalities which exhibit unbounded violation. The concept was to exploit the relationship between steering violation and uncertainty relation. To this end we apply mutually unbiased bases and anti-commuting observables, known to exibit the strongest uncertainty. In both cases, we are able to procure unbounded violations. Our approach is much more constructive and transparent than the operator space theory approach employed to obtain large violation of Bell inequalities. Importantly, using anti-commuting observables we are able to obtain a {it dichotomic} steering inequality with unbounded violation. So far there is no analogous result for Bell inequalities. Interestingly, both the dichotomic inequality and one of our inequalities can not be directly obtained from existing uncertainty relations, which strongly suggest the existence of an unknown kind of uncertainty relation.
A local numerical range is analyzed for a family of circulant observables and states of composite $2 otimes d$ systems. It is shown that for any $2otimes d$ circulant operator $cal O$ there exists a basis giving rise to the matrix representation with real non-negative off-diagonal elements. In this basis the problem of finding extremum of $cal O$ on product vectors $ket{x}otimes ket{y} in mathbb{C}^2otimes mathbb{C}^d$ reduces to the corresponding problem in $mathbb{R}^2otimes mathbb{R}^d$. The final analytical result for $d=2$ is presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا