ترغب بنشر مسار تعليمي؟ اضغط هنا

High-luminosity fixed target experiments provide impressive sensitivity to new light weakly coupled degrees of freedom. We revisit the minimal case of a scalar singlet $S$ coupled to the Standard Model through the Higgs portal, that decays visibly to leptons for scalar masses below the di-pion threshold. The dataset from the LSND experiment is found to impose the leading constraints within two mass windows between $m_S sim 100$ and 350 MeV. In the process, we analyze a number of scalar production channels in the target, finding that proton bremsstrahlung provides the dominant channel at LSND beam energies.
Precision cosmology provides a sensitive probe of extremely weakly coupled states due to thermal freeze-in production, with subsequent decays impacting physics during well-tested cosmological epochs. We explore the cosmological implications of the fr eeze-in production of a new scalar $S$ via the super-renormalizable Higgs portal. If the mass of $S$ is at or below the electroweak scale, peak freeze-in production occurs during the electroweak epoch. We improve the calculation of the freeze-in abundance by including all relevant QCD and electroweak production channels. The resulting abundance and subsequent decay of $S$ is constrained by a combination of X-ray data, cosmic microwave background anisotropies and spectral distortions, $N_{rm eff}$, and the consistency of BBN with observations. These probes constrain technically natural couplings for such scalars from $m_S sim$ keV all the way to $m_S sim 100$ GeV. The ensuing constraints are similar in spirit to typical beam bump limits, but extend to much smaller couplings, down to mixing angles as small as $theta_{Sh} sim 10^{-16}$, and to masses all the way to the electroweak scale.
We analyze the prospects for detection of light sub-GeV dark matter produced in experiments designed to study the properties of neutrinos, such as MiniBooNE, T2K, SHiP, DUNE etc. We present an improved production model, when dark matter couples to ha dronic states via a dark photon or baryonic vector mediator, incorporating bremsstrahlung of the dark vector. In addition to elastic scattering, we also study signatures of light dark matter undergoing deep inelastic or quasi-elastic NC$pi^0$-like scattering in the detector producing neutral pions, which for certain experiments may provide the best sensitivity. An extensive appendix provides documentation for a publicly available simulation tool {tt BdNMC} that can be applied to determine the hidden sector dark matter production and scattering rate at a range of proton fixed target experiments.
We study scalar field configurations around Kerr black holes with a time-independent energy-momentum tensor. These stationary `scalar clouds, confined near the black hole (BH) by their own mass or a mirror at fixed radius, exist at the threshold for energy extraction via superradiance. Motivated by the electromagnetic Blandford-Znajek (BZ) mechanism, we explore whether scalar clouds could serve as a proxy for the force-free magnetosphere in the BZ process. We find that a stationary energy-extracting scalar cloud solution exists when the reflecting mirror is replaced by a semi-permeable surface which allows the cloud to radiate some energy to infinity while maintaining self-sustained superradiance. The radial energy flux displays the same behaviour for rapidly rotating holes as magnetohydrodynamic simulations predict for the BZ mechanism.
We study the impact on leptogenesis of Higgs portal couplings to a new scalar singlet. These couplings open up additional $CP$-violating decay channels for the higher mass singlet neutrinos $N_2$ and $N_3$. We analyze the simplest case of two-level $ N_1-N_2$ leptogenesis, including significant mass hierarchies, in which the $CP$ asymmetry is generated in part by singlet-mediated decays of $N_2$. For these models, provided the lightest singlet neutrino $N_1$ is sufficiently weakly coupled to avoid excessive washout, its mass scale is not directly constrained by the Davidson-Ibarra bound.
253 - Maxim Pospelov , Adam Ritz 2013
All current experiments searching for an electron EDM d_e are performed with atoms and diatomic molecules. Motivated by significant recent progress in searches for an EDM-type signal in diatomic molecules with an uncompensated electron spin, we provi de an estimate for the expected signal in the Standard Model due to the CKM phase. We find that the main contribution originates from the effective electron-nucleon operator $bar{e} igamma_5 e bar{N}N$, induced by a combination of weak and electromagnetic interactions at $O(G_F^2alpha^2)$, and not by the CKM-induced electron EDM itself. When the resulting atomic P,T-odd mixing is interpreted as an {it equivalent} electron EDM, this estimate leads to the benchmark $d_e^{equiv}(CKM) sim 10^{-38}$ ecm.
We study the worldvolume dynamics of BPS domain walls in N=1 SQCD with N_f=N flavors, and exhibit an enhancement of supersymmetry for the reduced moduli space associated with broken flavor symmetries. We provide an explicit construction of the worldv olume superalgebra which corresponds to an N=2 Kahler sigma model in 2+1D deformed by a potential, given by the norm squared of a U(1) Killing vector, resulting from the flavor symmetries broken by unequal quark masses. This framework leads to a worldvolume description of novel two-wall junction configurations, which are 1/4-BPS objects, but nonetheless preserve two supercharges when viewed as kinks on the wall worldvolume.
403 - D.A. Demir , M. Pospelov , A. Ritz 2002
We re-examine questions concerning the contribution of the three-gluon Weinberg operator to the electric dipole moment of the neutron, and provide several QCD sum rule-based arguments that the result is smaller than - but nevertheless consistent with - estimates which invoke naive dimensional analysis. We also point out a regime of the MSSM parameter space with light gluinos for which this operator provides the dominant contribution to the neutron electric dipole moment due to enhancement via the dimension five color electric dipole moment of the gluino.
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined via the Witten index of the induced worldvolume theory, which is invariant under the deformation to the Higgs phase. The worldvolume theory is a sigma model with a Grassmanian target space which arises as the coset associated with the global symmetries broken by the wall solution. Imposing a suitable infrared regulator, the result is found to agree with recent work of Acharya and Vafa in which the walls were realized as wrapped D4-branes in IIA string theory.
213 - M. Banados , O. Chandia , A. Ritz 2002
In two dimensional conformal field theory the generating functional for correlators of the stress-energy tensor is given by the non-local Polyakov action associated with the background geometry. We study this functional holographically by calculating the regularized on-shell action of asymptotically AdS gravity in three dimensions, associated with a specified (but arbitrary) boundary metric. This procedure is simplified by making use of the Chern-Simons formulation, and a corresponding first-order expansion of the bulk dreibein, rather than the metric expansion of Fefferman and Graham. The dependence of the resulting functional on local moduli of the boundary metric agrees precisely with the Polyakov action, in accord with the AdS/CFT correspondence. We also verify the consistency of this result with regard to the nontrivial transformation properties of bulk solutions under Brown-Henneaux diffeomorphisms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا