ترغب بنشر مسار تعليمي؟ اضغط هنا

CKM benchmarks for electron EDM experiments

348   0   0.0 ( 0 )
 نشر من قبل Adam Ritz
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

All current experiments searching for an electron EDM d_e are performed with atoms and diatomic molecules. Motivated by significant recent progress in searches for an EDM-type signal in diatomic molecules with an uncompensated electron spin, we provide an estimate for the expected signal in the Standard Model due to the CKM phase. We find that the main contribution originates from the effective electron-nucleon operator $bar{e} igamma_5 e bar{N}N$, induced by a combination of weak and electromagnetic interactions at $O(G_F^2alpha^2)$, and not by the CKM-induced electron EDM itself. When the resulting atomic P,T-odd mixing is interpreted as an {it equivalent} electron EDM, this estimate leads to the benchmark $d_e^{equiv}(CKM) sim 10^{-38}$ ecm.



قيم البحث

اقرأ أيضاً

Experiments searching for the electric dipole moment (EDM) of the electron $d_e$ utilise atomic/molecular states with one or more uncompensated electron spins, and these paramagnetic systems have recently achieved remarkable sensitivity to $d_e$. If the source of $CP$ violation resides entirely in the hadronic sector, the two-photon exchange processes between electrons and the nucleus induce $CP$-odd semileptonic interactions, parametrised by the Wilson coefficient $C_{SP}$, and provide the dominant source of EDMs in paramagnetic systems instead of $d_e$. We evaluate the $C_{SP}$ coefficients induced by the leading hadronic sources of $CP$ violation, namely nucleon EDMs and $CP$-odd pion-nucleon couplings, by calculating the nucleon-number-enhanced $CP$-odd nuclear scalar polarisability, employing chiral perturbation theory at the nucleon level and the Fermi-gas model for the nucleus. This allows us to translate the ACME EDM limits from paramagnetic ThO into novel independent constraints on the QCD theta term $|bar theta| < 3 times 10^{-8}$, proton EDM $|d_p| < 2 times 10^{-23},e,{rm cm}$, isoscalar $CP$-odd pion-nucleon coupling $|bar g^{(1)}_{pi NN}| < 4 times 10^{-10}$, and colour EDMs of quarks $|tilde d_u - tilde d_d| < 2 times 10^{-24},{rm cm}$. We note that further experimental progress with EDM experiments in paramagnetic systems may allow them to rival the sensitivity of EDM experiments with neutrons and diamagnetic atoms to these quantities.
Experiments with paramagnetic ground or metastable excited states of molecules (ThO, HfF$^+$, YbF, YbOH, BaF, PbO, etc.) provide strong constraints on electron electric dipole moment (EDM) and coupling constant $C_{SP}$ of contact semileptonic intera ction. We compute new contributions to $C_{SP}$ arising from the nucleon EDMs due to combined electric and magnetic electron-nucleon interaction. This allows us to improve limits from the experiments with paramagnetic molecules on the $CP$-violating parameters, such as the proton EDM, $|d_p|< 1.1times 10^{-23} ecdot $cm, the QCD vacuum angle, $|bar theta|<1.4times 10^{-8}$, as well as the quark chromo-EDMs and $pi$-meson-nucleon couplings. Our results may also be used to search for the axion dark matter which produces oscillating $bartheta$.
The ACME collaboration has recently announced a new constraint on the electron EDM, $|d_e| < 1.1 times 10^{-29}, e, {rm cm}$, from measurements of the ThO molecule. This is a powerful constraint on CP-violating new physics: even new physics generatin g the EDM at two loops is constrained at the multi-TeV scale. We interpret the bound in the context of different scenarios for new physics: a general order-of-magnitude analysis for both the electron EDM and the CP-odd electron-nucleon coupling; 1-loop SUSY, probing sleptons above 10 TeV; 2-loop SUSY, probing multi-TeV charginos or stops; and finally, new physics that generates the EDM via the charm quark or top quark Yukawa couplings. In the last scenario, new physics generates a QULE operator $(q_f bar{sigma}^{mu u}{bar u}_f) cdot (ell {bar{sigma}}_{mu u} {bar e})$, which in turn generates the EDM through RG evolution. If the QULE operator is generated at tree level, this corresponds to a previously studied leptoquark model. For the first time, we also classify scenarios in which the QULE operator is generated at one loop through a box diagram, which include SUSY and leptoquark models. The electron EDM bound is the leading constraint on a wide variety of theories of CP-violating new physics interacting with the Higgs boson or the top quark. We argue that any future nonzero measurement of an electron EDM will provide a strong motivation for constructing new colliders at the highest feasible energies.
In the context of the minimal supersymmetric seesaw model, the CP-violating neutrino Yukawa couplings might induce an electron EDM. The same interactions may also be responsible for the generation of the observed baryon asymmetry of the Universe via leptogenesis. We identify in a model-independent way those patterns within the seesaw models which predict an electron EDM at a level probed by planned laboratory experiments and show that negative searches on tau-> e gamma decay may provide the strongest upper bound on the electron EDM. We also conclude that a possible future detection of the electron EDM is incompatible with thermal leptogenesis, even when flavour effects are accounted for.
112 - A. De Rujula , M. Lusignoli 2016
The electron-neutrino mass (or masses and mixing angles) may be directly measurable in weak electron-capture decays. The favoured experimental technique is calorimetric. The optimal nuclide is $^{163}$Ho, and several experiments (ECHo, HOLMES and NuM ECS) are currently studying its decay. The most relevant range of the calorimetric-energy spectrum extends for the last few hundred eV below its endpoint. It has not yet been well measured. We explore the theory, mainly in the cited range, of electron capture in $^{163}$Ho decay. A so far neglected process turns out to be most relevant: electron-capture accompanied by the shake-off of a second electron. Our two main conclusions are very encouraging: the counting rate close to the endpoint may be more than an order of magnitude larger than previously expected; the pile-up problem may be significantly reduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا