ترغب بنشر مسار تعليمي؟ اضغط هنا

In the present paper we indicate some Leibniz algebras whose closures of orbits under the natural action of $GL_n$ form an irreducible component of the variety of complex $n$-dimensional Leibniz algebras. Moreover, for these algebras we calculate the bases of their second groups of cohomologies.
This paper is devoted to the description of complex finite-dimensional algebras of level two. We obtain the classification of algebras of level two in the varieties of Jordan, Lie and associative algebras.
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra $n_{n,1}.$ We introduce a Fock module for the algebra $n_{n,1}$ and provide classification of Leibniz algebras $L$ whose corresponding Lie algebra $L/I$ is the algebra $n_{n,1}$ with condition that the ideal $I$ is a Fock $n_{n,1}$-module, where $I$ is the ideal generated by squares of elements from $L$.
In this paper the description of solvable Lie algebras with triangular nilradicals is extended to Leibniz algebras. It is proven that the matrices of the left and right operators on elements of Leibniz algebra have upper triangular forms. We establis h that solvable Leibniz algebra of a maximal possible dimension with a given triangular nilradical is a Lie algebra. Furthermore, solvable Leibniz algebras with triangular nilradicals of low dimensions are classified.
In this paper we study subalgebras of complex finite dimensional evolution algebras. We obtain the classification of nilpotent evolution algebras whose any subalgebra is an evolution subalgebra with a basis which can be extended to a natural basis of algebra. Moreover, we formulate three conjectures related to description of such non-nilpotent algebras.
In the present paper we obtain the list of algebras, up to isomorphism, such that closure of any complex finite-dimensional algebra contains one of the algebra of the given list.
In this paper we investigate the derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension is decomposed into three non-intersected families. We found sufficient conditions under which filiform Leib niz algebras of the first family are characteristically nilpotent. Moreover, for the first family we classify non-characteristically nilpotent algebras by means of Catalan numbers. In addition, for the rest two families of filiform Leibniz algebras we describe non-characteristically nilpotent algebras, i.e., those filiform Leibniz algebras which lie in the complementary set to those characteristically nilpotent.
W. A. Moens proved that a Lie algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. In this paper we show that with the definition of Leibniz-derivation from W. A. Moens the similar result for non Lie Leibniz algebras is not true. Namely, we give an example of non nilpotent Leibniz algebra which admits an invertible Leibniz-derivation. In order to extend the results of paper W. A. Moens for Leibniz algebras we introduce a definition of Leibniz-derivation of Leibniz algebras which agrees with Leibniz-derivation of Lie algebras case. Further we prove that a Leibniz algebra is nilpotent if and only if it admits an invertible Leibniz-derivation. Moreover, the result that solvable radical of a Lie algebra is invariant with respect to a Leibniz-derivation was extended to the case of Leibniz algebras.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا