ترغب بنشر مسار تعليمي؟ اضغط هنا

The second gravitational-wave transient catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, whi ch reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period, which is now publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5, using the default priors. Of these candidates, 36 have been reported in GWTC-2. If the 8 additional high-significance candidates presented here are astrophysical, the mass range of candidate events that are unambiguously identified as binary black holes (both objects $geq 3M_odot$) is increased compared to GWTC-2, with total masses from $sim 14M_odot$ for GW190924_021846 to $sim 184M_odot$ for GW190426_190642. The primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events ($q lt 0.61$ and $q lt 0.62$ at $90%$ credibility for GW190403_051519 and GW190917_114630 respectively), and find that 2 of the 8 new events have effective inspiral spins $chi_mathrm{eff} > 0$ (at $90%$ credibility), while no binary is consistent with $chi_mathrm{eff} lt 0$ at the same significance.
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational -wave astronomy. Broadly classified into short $ lesssim 1~$,s and long $ gtrsim 1~$,s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgos third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of $2~text{--}~ 500$~s in duration and a frequency band of $24 - 2048$ Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude $h_{mathrm{rss}}$ as a function of waveform morphology. These $h_{mathrm{rss}}$ limits improve upon the results from the second observing run by an average factor of 1.8.
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate-density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as $sim$10$^{-10} M_{odot} c^2$ in gravitational waves at $sim$70 Hz from a distance of 10~kpc, with 50% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f-modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models.
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]times10^{-8}$,Hz/s. Such a signal could be produced by a nearby, spinning and slightl y non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGOs and Advanced Virgos third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (CL) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude $h_0$ are $~1.7times10^{-25}$ near 200,Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are $sim6.3times10^{-26}$. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% CL upper limits on the strain amplitude are $sim1.times10^{-25}$. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of $sim$2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched.
We report the observation of gravitational waves from two compact binary coalescences in LIGOs and Virgos third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW2001 15_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo, and the second by all three LIGO-Virgo detectors. The source of GW200105 has component masses $8.9^{+1.2}_{-1.5},M_odot$ and $1.9^{+0.3}_{-0.2},M_odot$, whereas the source of GW200115 has component masses $5.7^{+1.8}_{-2.1},M_odot$ and $1.5^{+0.7}_{-0.3},M_odot$ (all measurements quoted at the 90% credible level). The probability that the secondarys mass is below the maximal mass of a neutron star is 89%-96% and 87%-98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are $280^{+110}_{-110}$ Mpc and $300^{+150}_{-100}$ Mpc, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain spin or tidal deformation of the secondary component for either event. We infer a NSBH merger rate density of $45^{+75}_{-33},mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ when assuming GW200105 and GW200115 are representative of the NSBH population, or $130^{+112}_{-69},mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ under the assumption of a broader distribution of component masses.
Intermediate-mass black holes (IMBHs) span the approximate mass range $100$--$10^5,M_odot$, between black holes (BHs) formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic grav itational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass $sim 150,M_odot,$ providing direct evidence of IMBH formation. Here we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modelled (matched filter) and model independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass $200,M_odot$ and effective aligned spin 0.8 at $0.056,Gpc^{-3} yr^{-1}$ (90 $%$ confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to $0.08, Gpc^{-3}yr^{-1}$.
We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgos third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between $m_{rm A} sim 10^{-14}-10^{-11}$ eV/$c^2$, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. $U(1)_{rm B}$ dark matter. For the cross-correlation method, the best median constraint on the squared coupling is $sim1.31times10^{-47}$ at $m_{rm A}sim4.2times10^{-13}$ eV/$c^2$; for the other analysis, the best constraint is $sim 1.2times 10^{-47}$ at $m_{rm A}sim 5.7times 10^{-13}$ eV/$c^2$. These limits improve upon those obtained in direct dark matter detection experiments by a factor of $sim100$ for $m_{rm A}sim [2-4]times 10^{-13}$ eV/$c^2$.
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal model s and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a frequency band spanning from 10~Hz to 2~kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample sub-bands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and $r$-mode amplitude. The best 95% confidence constraints placed on the signal strain are $7.7times 10^{-26}$ and $7.8times 10^{-26}$ near 200~Hz for the supernova remnants G39.2--0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and $r$-mode amplitude reach $lesssim 10^{-7}$ and $ lesssim 10^{-5}$, respectively, at frequencies above $sim 400$~Hz for the closest supernova remnant G266.2--1.2/Vela Jr.
We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; 2) how the interpretation of individual high-mass events would change if they were found to be lensed; 3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and 4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses.
We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitch er known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86-97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode driven spin-down in PSR J0537-6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا