ترغب بنشر مسار تعليمي؟ اضغط هنا

Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo

201   0   0.0 ( 0 )
 نشر من قبل LSC P&P Committee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a frequency band spanning from 10~Hz to 2~kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample sub-bands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and $r$-mode amplitude. The best 95% confidence constraints placed on the signal strain are $7.7times 10^{-26}$ and $7.8times 10^{-26}$ near 200~Hz for the supernova remnants G39.2--0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and $r$-mode amplitude reach $lesssim 10^{-7}$ and $ lesssim 10^{-5}$, respectively, at frequencies above $sim 400$~Hz for the closest supernova remnant G266.2--1.2/Vela Jr.



قيم البحث

اقرأ أيضاً

We describe directed searches for continuous gravitational waves from sixteen well localized candidate neutron stars assuming none of the stars has a binary companion. The searches were directed toward fifteen supernova remnants and Fomalhaut~b, an e xtrasolar planet candidate which has been suggested to be a nearby old neutron star. Each search covered a broad band of frequencies and first and second time derivatives. After coherently integrating spans of data from the first Advanced LIGO observing run of 3.5--53.7 days per search, applying data-based vetoes and discounting known instrumental artifacts, we found no astrophysical signals. We set upper limits on intrinsic gravitational wave strain as strict as $1times10^{-25}$, on fiducial neutron star ellipticity as strict as $2times10^{-9}$, and on fiducial $r$-mode amplitude as strict as $3times10^{-8}$.
202 - J. Aasi , B. P. Abbott , R. Abbott 2014
We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One targets parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as $4times10^{-25}$ on intrinsic strain, $2times10^{-7}$ on fiducial ellipticity, and $3times10^{-6}$ on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.
With the conclusion of the third observing run for Advanced LIGO/Virgo (O3), we present a detailed analysis of both triggered and serendipitous observations of 17 gravitational wave (GW) events (7 triggered and 10 purely serendipitous) from the Searc hes After Gravitational-waves Using ARizona Observatories (SAGUARO) program. We searched a total of 4935 deg$^2$ down to a median 5$sigma$ transient detection depth of 21.1 AB mag using the Mt Lemmon 1.5 m telescope, the discovery engine for SAGUARO. In addition to triggered events within 24~hours, our transient search encompassed a time interval following GW events of $<120$~hrs, providing observations on $sim$ 1/2 of the events accessible to the Mt Lemmon 1.5 m telescope. We covered 2.1--86% of the LVC total probability ($P_{rm total}$) for individual events, with a median $P_{rm total} approx 8%$ within $<120$~hours. Following improvements to our pipeline and the addition of serendipitous observations, we find a total of 7 new optical candidates across 5 GW events which we are unable to rule out after searching for additional information and comparing to kilonova models. Using both publicly available and our own late-time data, we investigated a total of 252 optical candidates for these 17 events, finding only 65% were followed up in some capacity by the community. Of the total 252 candidates, we are able to rule out an additional 12 previously reported counterpart candidates. In light of these results, we discuss lessons learned from the SAGUARO GW counterpart search. We discuss how community coordination of observations and candidate follow-up, as well as the role of archival data, are crucial to improving the efficiency of follow-up efforts and preventing unnecessary duplication of effort with limited EM resources.
We present Searches After Gravitational-waves Using ARizona Observatories (SAGUARO), a comprehensive effort dedicated to the discovery and characterization of optical counterparts to gravitational wave (GW) events. SAGUARO utilizes ground-based facil ities ranging from 1.5m to 10m in diameter, located primarily in the Northern Hemisphere. We provide an overview of SAGUAROs telescopic resources, pipeline for transient detection, and database for candidate visualization. We describe SAGUAROs discovery component, which utilizes the $5$~deg$^2$ field-of-view optical imager on the Mt. Lemmon 1.5m telescope, reaching limits of $approx 21.3$~AB mag while rapidly tiling large areas. We also describe the follow-up component of SAGUARO, used for rapid vetting and monitoring of optical candidates. With the onset of Advanced LIGO/Virgos third observing run, we present results from the first three SAGUARO searches following the GW events S190408an, S190425z and S190426c, which serve as a valuable proof-of-concept of SAGUARO. We triggered and searched 15, 60 and 60 deg$^{2}$ respectively, 17.6, 1.4 and 41.8 hrs after the initial GW alerts. We covered 7.8, 3.0 and 5.1% of the total probability within the GW event localizations, reaching 3$sigma$ limits of 19.8, 21.3 and 20.8 AB mag, respectively. Although no viable counterparts associated with these events were found, we recovered 6 known transients and ruled out 5 potential candidates. We also present Large Binocular Telescope spectroscopy of PS19eq/SN2019ebq, a promising kilonova candidate that was later determined to be a supernova. With the ability to tile large areas and conduct detailed follow-up, SAGUARO represents a significant addition to GW counterpart searches.
We report on the search for electromagnetic counterparts to the nine gravitational-wave events with a $>$60% probability of containing a neutron star during the third (O3) LIGO-Virgo Collaboration (LVC) observing run with the All-Sky Automated Survey for SuperNovae (ASAS-SN). No optical counterparts associated with a gravitational wave event was found. However, thanks to its network of telescopes, the average area visible to at least one ASAS-SN site during the first 10 hours after the trigger contained $sim$30% of the integrated source location probability. Through a combination of normal operations and target-of-opportunity observations, ASAS-SN observations of the highest probability fields began within one hour of the trigger for four of the events. After 24 hours, ASAS-SN observed $>$60% of total probability for three events and $>$40% for all but one of the events. This is the largest area coverage to a depth of $g = 18.5$ mag from any survey with published coverage statistics for seven of the nine events. With its observing strategy, five sites around the world, and a large field of view, ASAS-SN will be one of the leading surveys to optically search for nearby neutron star mergers during LVC O4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا