ترغب بنشر مسار تعليمي؟ اضغط هنا

Two zero-range-interacting atoms in a circular, transversely harmonic waveguide are used as a test-bench for a quantitative description of the crossover between integrability and chaos in a quantum system with no selection rules. For such systems we show that the expectation value after relaxation of a generic observable is given by a linear interpolation between its initial and thermal expectation values. The variable of this interpolation is universal; it governs this simple law to cover the whole spectrum of the chaotic behavior from integrable regime through the well- developed quantum chaos. The predictions are confirmed for the waveguide system, where the mode occupations and the trapping energy were used as the observables of interest; a variety of the initial states and a full range of the interaction strengths have been tested.
We have used the two-step growth technique, quench condensing followed by an anneal, to grow ultra thin films of silver on glass substrates. As has been seen with semiconductor substrates this process produces a metastable homogeneous covering of sil ver. By measuring the in situ resistance of the film during growth we are able to see that the low temperature growth onto substrates held at 100 Kelvin produces a precursor phase that is insulating until the film has been annealed. The transformation of the precursor phase into the final, metallic silver film occurs at a characteristic temperature near 150K where the sample reconstructs. This reconstruction is accompanied by a decrease in resistance of up to 10 orders of magnitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا