ترغب بنشر مسار تعليمي؟ اضغط هنا

150 - Andrea Petri 2015
Weak gravitational lensing is a powerful cosmological probe, with non--Gaussian features potentially containing the majority of the information. We examine constraints on the parameter triplet $(Omega_m,w,sigma_8)$ from non-Gaussian features of the w eak lensing convergence field, including a set of moments (up to $4^{rm th}$ order) and Minkowski functionals, using publicly available data from the 154deg$^2$ CFHTLenS survey. We utilize a suite of ray--tracing N-body simulations spanning 91 points in $(Omega_m,w,sigma_8)$ parameter space, replicating the galaxy sky positions, redshifts and shape noise in the CFHTLenS catalogs. We then build an emulator that interpolates the simulated descriptors as a function of $(Omega_m,w,sigma_8)$, and use it to compute the likelihood function and parameter constraints. We employ a principal component analysis to reduce dimensionality and to help stabilize the constraints with respect to the number of bins used to construct each statistic. Using the full set of statistics, we find $Sigma_8equivsigma_8(Omega_m/0.27)^{0.55}=0.75pm0.04$ (68% C.L.), in agreement with previous values. We find that constraints on the $(Omega_m,sigma_8)$ doublet from the Minkowski functionals suffer a strong bias. However, high-order moments break the $(Omega_m,sigma_8)$ degeneracy and provide a tight constraint on these parameters with no apparent bias. The main contribution comes from quartic moments of derivatives.
447 - Jia Liu 2014
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we exami ne constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg$^2$ CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters $Omega_m$, $sigma_8$, and $w$, and replicating the Galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of $leq 5%$, and compute the likelihood in the three-dimensional parameter space ($Omega_m$, $sigma_8$, $w$) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain $w$ without external data. When the power spectrum and peak counts are combined, the area of the error banana in the ($Omega_m$, $sigma_8$) plane reduces by a factor of $approx2$, compared to using the power spectrum alone. For a flat $Lambda$ cold dark matter model, combining both statistics, we obtain the constraint $sigma_8(Omega_m/0.27)^{0.63}=0.85substack{+0.03 -0.03}$.
Residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing sim ulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet $(Omega_m,w,sigma_8)$ derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MF), low--order moments (LM), and peak counts (PK). Our main results are: (i) We find an order of magnitude smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of $sigma^2_{sys}approx 10^{-7}$, biases from the PS and LM would be unimportant even for a survey with the statistical power of LSST. However, we find that for surveys larger than $approx 100$ deg$^2$, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF,PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in $(Omega_m,w,sigma_8)$ parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.
We compare the efficiency of moments and Minkowski functionals (MFs) in constraining the subset of cosmological parameters (Omega_m,w,sigma_8) using simulated weak lensing convergence maps. We study an analytic perturbative expansion of the MFs in te rms of the moments of the convergence field and of its spatial derivatives. We show that this perturbation series breaks down on smoothing scales below 5, while it shows a good degree of convergence on larger scales (15). Most of the cosmological distinguishing power is lost when the maps are smoothed on these larger scales. We also show that, on scales comparable to 1, where the perturbation series does not converge, cosmological constraints obtained from the MFs are approximately 1.5-2 times better than the ones obtained from the first few moments of the convergence distribution --- provided that the latter include spatial information, either from moments of gradients, or by combining multiple smoothing scales. Including either a set of these moments or the MFs can significantly tighten constraints on cosmological parameters, compared to the conventional method of using the power spectrum alone.
The spectra of several high-redshift (z>6) quasars have shown evidence for a Gunn-Peterson (GP) damping wing, indicating a substantial mean neutral hydrogen fraction (x_HI > 0.03) in the z ~ 6 intergalactic medium (IGM). However, previous analyses as sumed that the IGM was uniformly ionized outside of the quasars HII region. Here we relax this assumption and model patchy reionization scenarios for a range of IGM and quasar parameters. We quantify the impact of these differences on the inferred x_HI, by fitting the spectra of three quasars: SDSS J1148+5251 (z=6.419), J1030+0524 (z=6.308), and J1623+3112 (z=6.247). We find that the best-fit values of x_HI in the patchy models agree well with the uniform case. More importantly, we confirm that the observed spectra favor the presence of a GP damping wing, with peak likelihoods decreasing by factors of > few - 10 when the spectra are modeled without a damping wing. We also find that the Ly alpha absorption spectra, by themselves, cannot distinguish the damping wing in a relatively neutral IGM from a damping wing in a highly ionized IGM, caused either by an isolated neutral patch, or by a damped Ly alpha absorber (DLA). However, neutral patches in a highly ionized universe (x_HI < 0.01), and DLAs with the large required column densities (N_HI > few x 10^{20} cm^{-2}) are both rare. As a result, when we include reasonable prior probabilities for the line of sight (LOS) to intercept either a neutral patch or a DLA at the required distance of ~ 40-60 comoving Mpc away from the quasar, we find strong lower limits on the neutral fraction in the IGM, x_HI > 0.1 (at 95% confidence). This strengthens earlier claims that a substantial global fraction of hydrogen in the z~6 IGM is in neutral form.
UV radiation from early astrophysical sources could have a large impact on subsequent star formation in nearby protogalaxies. Here we study the radiative feedback from the first, short-lived stars using hydrodynamical simulations with transient UV ba ckgrounds (UVBs) and persistent Lyman-Werner backgrounds (LWBs) of varying intensity. We extend our prior work in Mesinger et al. (2006), by studying a more typical region whose proto-galaxies form at lower redshifts, z~13-20, in the epoch likely preceding the bulk of reionization. We confirm our previous results that feedback in the relic HII regions resulting from such transient radiation, is itself transient. Feedback effects dwindle away after ~30% of the Hubble time, and the same critical specific intensity of J_UV~0.1 x 10^{-21} ergs/s/cm^2/Hz/sr separates positive and negative feedback regimes. Additionally, we discover a second episode of eventual positive feedback in halos which have not yet collapsed when their progenitor regions were exposed to the transient UVB. This eventual positive feedback appears in all runs, regardless of the strength of the UVB. However, this feedback regime is very sensitive to the presence of Lyman-Werner radiation, and notable effects disappear under fairly modest background intensities of J_LW>10^{-3} x 10^{-21} ergs/s/cm^2/Hz/sr. We conclude that UV radiative feedback in relic HII regions, although a complicated process, seems unlikely to have a major impact on the progress of cosmological reionization, provided that present estimates of the lifetime and luminosity of a PopIII star are accurate. More likely is that the build-up of the LWB ultimately governs the feedback strength until a persistent UV background can be established. [abridged]
We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constra ints that are free from potential selection effects and biases involved in identifying and determining the masses of galaxy clusters. We have run cosmological N-body simulations to produce WL convergence maps in three models with different constant values of the dark energy equation of state parameter, w=-0.8, -1, and -1.2, with a fixed normalization of the primordial power spectrum (corresponding to present-day normalizations of sigma8=0.742, 0.798, and 0.839, respectively). By comparing the number of WL peaks in 8 convergence bins in the range of -0.1 < kappa < 0.2, in multiple realizations of a single simulated 3x3 degree field, we show that the first (last) pair of models can be distinguished at the 95% (85%) confidence level. A survey with depth and area (20,000 sq. degrees), comparable to those expected from LSST, should have a factor of approx. 50 better parameter sensitivity. We find that relatively low-amplitude peaks (kappa = 0.03), which typically do not correspond to a single collapsed halo along the line of sight, account for most of this sensitivity. We study a range of smoothing scales and source galaxy redshifts (z_s). With a fixed source galaxy density of 15/arcmin^2, the best results are provided by the smallest scale we can reliably simulate, 1 arcminute, and z_s=2 provides substantially better sensitivity than z_s< 1.5.
44 - Zoltan Haiman 2008
Supermassive black hole binaries (SMBHBs) with masses in the range 10^4-10^7 M_sun/(1+z), produced in galaxy mergers, are thought to complete their coalescence due to the emission of gravitational waves (GWs). The anticipated detection of the GWs by the LISA will constitute a milestone for fundamental physics and astrophysics. While the GW signatures themselves will provide a treasure trove of information, if the source can be securely identified in electromagnetic (EM) bands, this would open up entirely new scientific opportunities, to probe fundamental physics, astrophysics, and cosmology. We discuss several ideas, involving wide-field telescopes, that may be useful in locating electromagnetic counterparts to SMBHBs detected by LISA. In particular, the binary may produce a variable electromagnetic flux, such as a roughly periodic signal due to the orbital motion prior to coalescence, or a prompt transient signal caused by shocks in the circumbinary disk when the SMBHB recoils and shakes the disk. We discuss whether these time-variable EM signatures may be detectable, and how they can help in identifying a unique counterpart within the localization errors provided by LISA. We also discuss a possibility of identifying a population of coalescing SMBHBs statistically, in a deep optical survey for periodically variable sources, before LISA detects the GWs directly. The discovery of such sources would confirm that gas is present in the vicinity and is being perturbed by the SMBHB - serving as a proof of concept for eventually finding actual LISA counterparts.
The earliest generation of stars and black holes must have established an early Lyman-Werner background (LWB) at high redshift, prior to the epoch of reionization. Because of the long mean free path of photons with energies E<13.6 eV, the LWB was nea rly uniform. However, some variation in the LWB is expected due to the discrete nature of the sources, and their highly clustered spatial distribution. In this paper, we compute the probability distribution function (PDF) of the LW flux that irradiates dark matter (DM) halos collapsing at high-redshift (z~10). Our model accounts for (i) the clustering of DM halos, (ii) Poisson fluctuations in the number of corresponding star forming galaxies, and (iii) scatter in the LW luminosity produced by halos of a given mass (calibrated using local observations). We find that > 99% of the DM halos are illuminated by a LW flux within a factor of 2 of the global mean value. However, a small fraction, ~1e-8 to 1e-6, of DM halos with virial temperatures above 1e4 K have a close luminous neighbor within < 10 kpc, and are exposed to a LW flux exceeding the global mean by a factor of > 20, or to J_(21,LW)> 1e3 (in units of 1e-21 erg/s/Hz/sr/cm^2). This large LW flux can photo--dissociate H_2 molecules in the gas collapsing due to atomic cooling in these halos, and prevent its further cooling and fragmentation. Such close halo pairs therefore provide possible sites in which primordial gas clouds collapse directly into massive black holes (M_BH~ 1e4 - 1e6 M_sun), and subsequently grow into supermassive (M_BH > 1e9 M_sun) black holes by z~6.
Non-gravitational processes, such as feedback from galaxies and their active nuclei, are believed to have injected excess entropy into the intracluster gas, and therefore to have modified the density profiles in galaxy clusters during their formation . Here we study a simple model for this so-called preheating scenario, and ask (i) whether it can simultaneously explain both global X-ray scaling relations and number counts of galaxy clusters, and (ii) whether the amount of entropy required evolves with redshift. We adopt a baseline entropy profile that fits recent hydrodynamic simulations, modify the hydrostatic equilibrium condition for the gas by including approx. 20% non-thermal pressure support, and add an entropy floor K_0 that is allowed to vary with redshift. We find that the observed luminosity-temperature (L-T) relations of low-redshift (z=0.05) HIFLUGCS clusters and high-redshift (z=0.8) WARPS clusters are best simultaneously reproduced with an evolving entropy floor of K_0(z)=341(1+z)^{-0.83}h^{-1/3} keV cm^2. If we restrict our analysis to the subset of bright (kT > 3 keV) clusters, we find that the evolving entropy floor can mimic a self-similar evolution in the L-T scaling relation. This degeneracy with self-similar evolution is, however, broken when (0.5 < kT < 3 keV) clusters are also included. The approx. 60% entropy increase we find from z=0.8 to z=0.05 is roughly consistent with that expected if the heating is provided by the evolving global quasar population. Using the cosmological parameters from the WMAP 3-year data with sigma_8=0.76, our best-fit model underpredicts the number counts of the X-ray galaxy clusters compared to those derived from the 158 deg^2 ROSAT PSPC survey. Treating sigma_8 as a free parameter, we find a best-fit value of sigma_8=0.80+/- 0.02.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا