ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of spurious shear on cosmological parameter estimates from weak lensing observables

151   0   0.0 ( 0 )
 نشر من قبل Andrea Petri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet $(Omega_m,w,sigma_8)$ derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MF), low--order moments (LM), and peak counts (PK). Our main results are: (i) We find an order of magnitude smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of $sigma^2_{sys}approx 10^{-7}$, biases from the PS and LM would be unimportant even for a survey with the statistical power of LSST. However, we find that for surveys larger than $approx 100$ deg$^2$, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF,PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in $(Omega_m,w,sigma_8)$ parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.

قيم البحث

اقرأ أيضاً

Upcoming surveys will map the growth of large-scale structure with unprecented precision, improving our understanding of the dark sector of the Universe. Unfortunately, much of the cosmological information is encoded by the small scales, where the cl ustering of dark matter and the effects of astrophysical feedback processes are not fully understood. This can bias the estimates of cosmological parameters, which we study here for a joint analysis of mock Euclid cosmic shear and Planck cosmic microwave background data. We use different implementations for the modelling of the signal on small scales and find that they result in significantly different predictions. Moreover, the different nonlinear corrections lead to biased parameter estimates, especially when the analysis is extended into the highly nonlinear regime, with both the Hubble constant, $H_0$, and the clustering amplitude, $sigma_8$, affected the most. Improvements in the modelling of nonlinear scales will therefore be needed if we are to resolve the current tension with more and better data. For a given prescription for the nonlinear power spectrum, using different corrections for baryon physics does not significantly impact the precision of Euclid, but neglecting these correction does lead to large biases in the cosmological parameters. In order to extract precise and unbiased constraints on cosmological parameters from Euclid cosmic shear data, it is therefore essential to improve the accuracy of the recipes that account for nonlinear structure formation, as well as the modelling of the impact of astrophysical processes that redistribute the baryons.
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image $sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $rsim27.5$, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than $sim10$ in the single short exposures, which propagates into a spurious shear correlation function at the $10^{-4}$--$10^{-3}$ level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
We investigate the impact of a common approximation on weak lensing power spectra: the use of single-epoch matter power spectra in integrals over redshift. We disentangle this from the closely connected Limbers approximation. We derive the unequal-ti me matter power spectrum at one-loop in standard perturbation theory and effective field theory to deal with non-linear physics. We compare these formalisms and conclude that the unequal-time power spectrum using effective field theory breaks for larger scales. As an alternative, we introduce the midpoint approximation. We also provide, for the first time, a fitting function for the time evolution of the effective field theory counterterms based on the Quijote simulations. Then we compute the angular power spectrum using a range of approaches: the Limbers approximation, and the geometric and midpoint approximations. We compare our results with the exact calculation at all angular scales using the unequal-time power spectrum. We use DES Y1 and LSST-like redshift distributions for our analysis. We find that the use of the Limbers approximation in weak lensing diverges from the exact calculation of the angular power spectrum on large-angle separations, $ell < 10$. Even though this deviation is of order $2%$ maximum for cosmic lensing, we find the biggest effect for galaxy clustering and galaxy-galaxy lensing. We show that not only is this true for upcoming galaxy surveys, but also for current data such as DES Y1. Finally, we make our pipeline and analysis publicly available as a Python package called unequalpy.
We present a finely-binned tomographic weak lensing analysis of the Canada-France-Hawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmolo gical model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm =0.70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1.5<theta<35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum sigma_8 = 0.799 +/- 0.015 and the matter density parameter Omega_m = 0.271 +/- 0.010 for a flat Lambda CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = -1.02 +/- 0.09. We also provide constraints for curved Lambda CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). For a flat $Lambda$CDM cosmology with a prior on $H_0$ that encompasses the most r ecent direct measurements, we find $S_8equivsigma_8sqrt{Omega_{rm m}/0.3}=0.745pm0.039$. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A $2.3$-$sigma$ tension in $S_8$ and `substantial discordance in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved `self-calibrating version of $lens$fit validated using an extensive suite of image simulations. Four-band $ugri$ photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains are available at http://kids.strw.leidenuniv.nl.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا