ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a framework to build formal developments for robot networks using the COQ proof assistant, to state and to prove formally various properties. We focus in this paper on impossibility proofs, as it is natural to take advantage of the COQ hig her order calculus to reason about algorithms as abstract objects. We present in particular formal proofs of two impossibility results forconvergence of oblivious mobile robots if respectively more than one half and more than one third of the robots exhibit Byzantine failures, starting from the original theorems by Bouzid et al.. Thanks to our formalization, the corresponding COQ developments are quite compact. To our knowledge, these are the first certified (in the sense of formally proved) impossibility results for robot networks.
61 - Zohir Bouzid 2011
In this paper, we consider the problem of formation of a series of geometric patterns [4] by a network of oblivious mobile robots that communicate only through vision. So far, the problem has been studied in models where robots are either assumed to have distinct identifiers or to be completely anonymous. To generalize these results and to better understand how anonymity affects the computational power of robots, we study the problem in a new model, introduced recently in [5], in which n robots may share up to 1 <= h <= n different identifiers. We present necessary and sufficient conditions, relating symmetricity and homonymy, that makes the problem solvable. We also show that in the case where h = n, making the identifiers of robots invisible does not limit their computational power. This contradicts a result of [4]. To present our algorithms, we use a function that computes the Weber point for many regular and symmetric configurations. This function is interesting in its own right, since the problem of finding Weber points has been solved up to now for only few other patterns.
This paper introduces the emph{RoboCast} communication abstraction. The RoboCast allows a swarm of non oblivious, anonymous robots that are only endowed with visibility sensors and do not share a common coordinate system, to asynchronously exchange i nformation. We propose a generic framework that covers a large class of asynchronous communication algorithms and show how our framework can be used to implement fundamental building blocks in robot networks such as gathering or stigmergy. In more details, we propose a RoboCast algorithm that allows robots to broadcast their local coordinate systems to each others. Our algorithm is further refined with a local collision avoidance scheme. Then, using the RoboCast primitive, we propose algorithms for deterministic asynchronous gathering and binary information exchange.
84 - Zohir Bouzid 2009
We study the convergence problem in fully asynchronous, uni-dimensional robot networks that are prone to Byzantine (i.e. malicious) failures. In these settings, oblivious anonymous robots with arbitrary initial positions are required to eventually co nverge to an a apriori unknown position despite a subset of them exhibiting Byzantine behavior. Our contribution is twofold. We propose a deterministic algorithm that solves the problem in the most generic settings: fully asynchronous robots that operate in the non-atomic CORDA model. Our algorithm provides convergence in 5f+1-sized networks where f is the upper bound on the number of Byzantine robots. Additionally, we prove that 5f+1 is a lower bound whenever robot scheduling is fully asynchronous. This constrasts with previous results in partially synchronous robots networks, where 3f+1 robots are necessary and sufficient.
81 - Zohir Bouzid 2009
We propose the first deterministic algorithm that tolerates up to $f$ byzantine faults in $3f+1$-sized networks and performs in the asynchronous CORDA model. Our solution matches the previously established lower bound for the semi-synchronous ATOM mo del on the number of tolerated Byzantine robots. Our algorithm works under bounded scheduling assumptions for oblivious robots moving in a uni-dimensional space.
219 - Zohir Bouzid 2009
Given a set of robots with arbitrary initial location and no agreement on a global coordinate system, convergence requires that all robots asymptotically approach the exact same, but unknown beforehand, location. Robots are oblivious-- they do not re call the past computations -- and are allowed to move in a one-dimensional space. Additionally, robots cannot communicate directly, instead they obtain system related information only via visual sensors. We draw a connection between the convergence problem in robot networks, and the distributed emph{approximate agreement} problem (that requires correct processes to decide, for some constant $epsilon$, values distance $epsilon$ apart and within the range of initial proposed values). Surprisingly, even though specifications are similar, the convergence implementation in robot networks requires specific assumptions about synchrony and Byzantine resilience. In more details, we prove necessary and sufficient conditions for the convergence of mobile robots despite a subset of them being Byzantine (i.e. they can exhibit arbitrary behavior). Additionally, we propose a deterministic convergence algorithm for robot networks and analyze its correctness and complexity in various synchrony settings. The proposed algorithm tolerates f Byzantine robots for (2f+1)-sized robot networks in fully synchronous networks, (3f+1)-sized in semi-synchronous networks. These bounds are optimal for the class of cautious algorithms, which guarantee that correct robots always move inside the range of positions of the correct robots.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا