ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Byzantine Resilient Convergence in Asynchronous Robot Networks

134   0   0.0 ( 0 )
 نشر من قبل Maria Potop-Butucaru
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Zohir Bouzid




اسأل ChatGPT حول البحث

We propose the first deterministic algorithm that tolerates up to $f$ byzantine faults in $3f+1$-sized networks and performs in the asynchronous CORDA model. Our solution matches the previously established lower bound for the semi-synchronous ATOM model on the number of tolerated Byzantine robots. Our algorithm works under bounded scheduling assumptions for oblivious robots moving in a uni-dimensional space.



قيم البحث

اقرأ أيضاً

268 - Zohir Bouzid 2009
Given a set of robots with arbitrary initial location and no agreement on a global coordinate system, convergence requires that all robots asymptotically approach the exact same, but unknown beforehand, location. Robots are oblivious-- they do not re call the past computations -- and are allowed to move in a one-dimensional space. Additionally, robots cannot communicate directly, instead they obtain system related information only via visual sensors. We draw a connection between the convergence problem in robot networks, and the distributed emph{approximate agreement} problem (that requires correct processes to decide, for some constant $epsilon$, values distance $epsilon$ apart and within the range of initial proposed values). Surprisingly, even though specifications are similar, the convergence implementation in robot networks requires specific assumptions about synchrony and Byzantine resilience. In more details, we prove necessary and sufficient conditions for the convergence of mobile robots despite a subset of them being Byzantine (i.e. they can exhibit arbitrary behavior). Additionally, we propose a deterministic convergence algorithm for robot networks and analyze its correctness and complexity in various synchrony settings. The proposed algorithm tolerates f Byzantine robots for (2f+1)-sized robot networks in fully synchronous networks, (3f+1)-sized in semi-synchronous networks. These bounds are optimal for the class of cautious algorithms, which guarantee that correct robots always move inside the range of positions of the correct robots.
This paper introduces the emph{RoboCast} communication abstraction. The RoboCast allows a swarm of non oblivious, anonymous robots that are only endowed with visibility sensors and do not share a common coordinate system, to asynchronously exchange i nformation. We propose a generic framework that covers a large class of asynchronous communication algorithms and show how our framework can be used to implement fundamental building blocks in robot networks such as gathering or stigmergy. In more details, we propose a RoboCast algorithm that allows robots to broadcast their local coordinate systems to each others. Our algorithm is further refined with a local collision avoidance scheme. Then, using the RoboCast primitive, we propose algorithms for deterministic asynchronous gathering and binary information exchange.
135 - Zohir Bouzid 2009
We study the convergence problem in fully asynchronous, uni-dimensional robot networks that are prone to Byzantine (i.e. malicious) failures. In these settings, oblivious anonymous robots with arbitrary initial positions are required to eventually co nverge to an a apriori unknown position despite a subset of them exhibiting Byzantine behavior. Our contribution is twofold. We propose a deterministic algorithm that solves the problem in the most generic settings: fully asynchronous robots that operate in the non-atomic CORDA model. Our algorithm provides convergence in 5f+1-sized networks where f is the upper bound on the number of Byzantine robots. Additionally, we prove that 5f+1 is a lower bound whenever robot scheduling is fully asynchronous. This constrasts with previous results in partially synchronous robots networks, where 3f+1 robots are necessary and sufficient.
89 - Danny Dolev , Eli Gafni 2016
We show that asynchronous $t$ faults Byzantine system is equivalent to asynchronous $t$-resilient system, where unbeknownst to all, the private inputs of at most $t$ processors were altered and installed by a malicious oracle. The immediate ramific ation is that dealing with asynchronous Byzantine systems does not call for new topological methods, as was recently employed by various researchers: Asynchronous Byzantine is a standard asynchronous system with an input caveat. It also shows that two recent independent investigations of vector $epsilon$-agreement in the Byzantine model, and then in the fail-stop model, one was superfluous - in these problems the change of $t$ inputs allowed in the Byzantine has no effect compared to the fail-stop case. This result was motivated by the aim of casting any asynchronous system as a synchronous system where all processors are correct and it is the communication substrate in the form of message-adversary that misbehaves. Thus, in addition, we get such a characterization for the asynchronous Byzantine system.
In this paper we extend the Multidimensional Byzantine Agreement (MBA) Protocol arXiv:2105.13487v2, a leaderless Byzantine agreement for vectors of arbitrary values, into the emph{Cob} protocol, that works in Asynchronous Gossiping (AG) networks. Thi s generalization allows the consensus process to be run by an incomplete network of nodes provided with (non-synchronized) same-speed clocks. Not all nodes are active in every step, so the network size does not hamper the efficiency, as long as the gossiping broadcast delivers the messages to every node in reasonable time. These network assumptions model more closely real-life communication channels, so the Cob protocol may be applicable to a variety of practical problems, such as blockchain platforms implementing sharding. The Cob protocol has the same Bernoulli-like distribution that upper bounds the number of steps required as the MBA protocol, and we prove its correctness and security assuming a supermajority of honest nodes in the network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا