ترغب بنشر مسار تعليمي؟ اضغط هنا

408 - Yi Zhu , Vidur Raj , Ziyuan Li 2021
Highly sensitive photodetectors with single photon level detection is one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most of the single-photon detection technologies require external biasing at high voltages and/or cooling to low temperatures, posing great limitations for wider applications. Here, we demonstrate InP nanowire array photodetectors that can achieve single-photon level light detection at room temperature without an external bias. We use top-down etched, heavily doped p-type InP nanowires and n-type AZO/ZnO carrier selective contact to form a radial p-n junction with a built-in electric field exceeding 3x10^5 V/cm at 0 V. The device exhibits broadband light sensitivity and can distinguish a single photon per pulse from the dark noise at 0 V, enabled by its design to realize near-ideal broadband absorption, extremely low dark current, and highly efficient charge carrier separation. Meanwhile, the bandwidth of the device reaches above 600 MHz with a timing jitter of 538 ps. The proposed device design provides a new pathway towards low-cost, high-sensitivity, self-powered photodetectors for numerous future applications.
83 - Ziyuan Liu , Wei Liu , Yuzhe Qin 2021
In this paper, we propose a cloud-based benchmark for robotic grasping and manipulation, called the OCRTOC benchmark. The benchmark focuses on the object rearrangement problem, specifically table organization tasks. We provide a set of identical real robot setups and facilitate remote experiments of standardized table organization scenarios in varying difficulties. In this workflow, users upload their solutions to our remote server and their code is executed on the real robot setups and scored automatically. After each execution, the OCRTOC team resets the experimental setup manually. We also provide a simulation environment that researchers can use to develop and test their solutions. With the OCRTOC benchmark, we aim to lower the barrier of conducting reproducible research on robotic grasping and manipulation and accelerate progress in this field. Executing standardized scenarios on identical real robot setups allows us to quantify algorithm performances and achieve fair comparisons. Using this benchmark we held a competition in the 2020 International Conference on Intelligence Robots and Systems (IROS 2020). In total, 59 teams took part in this competition worldwide. We present the results and our observations of the 2020 competition, and discuss our adjustments and improvements for the upcoming OCRTOC 2021 competition. The homepage of the OCRTOC competition is www.ocrtoc.org, and the OCRTOC software package is available at https://github.com/OCRTOC/OCRTOC_software_package.
Large-volume liquid scintillator detectors with ultra-low background levels have been widely used to study neutrino physics and search for dark matter. Event vertex and event time are not only useful for event selection but also essential for the rec onstruction of event energy. In this study, four event vertex and event time reconstruction algorithms using charge and time information collected by photomultiplier tubes were analyzed comprehensively. The effects of photomultiplier tube properties were also investigated. The results indicate that the transit time spread is the main effect degrading the vertex reconstruction, while the effect of dark noise is limited. In addition, when the event is close to the detector boundary, the charge information provides better performance for vertex reconstruction than the time information.
Surface alloying is a straightforward route to control and modify the structure and electronic properties of surfaces. Here, We present a systematical study on the structural and electronic properties of three novel rare earth-based intermetallic com pounds, namely ReAu2 (Re = Tb, Ho, and Er), on Au(111) via directly depositing rare-earth metals onto the hot Au(111) surface. Scanning tunneling microscopy/spectroscopy measurements reveal the very similar atomic structures and electronic properties, e.g. electronic states, and surface work functions, for all these intermetallic compound systems due to the physical and chemical similarities between these rare earth elements. Further, these electronic properties are periodically modulated by the moire structures caused by the lattice mismatches between ReAu2 and Au(111). These periodically modulated surfaces could serve as templates for the self-assembly of nanostructures. Besides, these two-dimensional rare earth-based intermetallic compounds provide platforms to investigate the rare earth related catalysis, magnetisms, etc., in the lower dimensions.
The challenge of markerless human motion tracking is the high dimensionality of the search space. Thus, efficient exploration in the search space is of great significance. In this paper, a motion capturing algorithm is proposed for upper body motion tracking. The proposed system tracks human motion based on monocular silhouette-matching, and it is built on the top of a hierarchical particle filter, within which a novel deterministic resampling strategy (DRS) is applied. The proposed system is evaluated quantitatively with the ground truth data measured by an inertial sensor system. In addition, we compare the DRS with the stratified resampling strategy (SRS). It is shown in experiments that DRS outperforms SRS with the same amount of particles. Moreover, a new 3D articulated human upper body model with the name 3D cardbox model is created and is proven to work successfully for motion tracking. Experiments show that the proposed system can robustly track upper body motion without self-occlusion. Motions towards the camera can also be well tracked.
In this paper we propose a method to extract an abstracted floor plan from typical grid maps using Bayesian reasoning. The result of this procedure is a probabilistic generative model of the environment defined over abstract concepts. It is well suit ed for higher-level reasoning and communication purposes. We demonstrate the effectiveness of the approach through real-world experiments.
In this paper, we propose a generalizable method that systematically combines data driven MCMC samplingand inference using rule-based context knowledge for data abstraction. In particular, we demonstrate the usefulness of our method in the scenario o f building abstract semantic maps for indoor environments. The product of our system is a parametric abstract model of the perceived environment that not only accurately represents the geometry of the environment but also provides valuable abstract information which benefits high-level robotic applications. Based on predefined abstract terms,such as type and relation, we define task-specific context knowledge as descriptive rules in Markov Logic Networks. The corresponding inference results are used to construct a priordistribution that aims to add reasonable constraints to the solution space of semantic maps. In addition, by applying a semantically annotated sensor model, we explicitly use context information to interpret the sensor data. Experiments on real world data show promising results and thus confirm the usefulness of our system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا