ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigated coherence delocalization on a coupled-cavity molecular polariton platform in time, frequency, and spatial domains, enabled by ultrafast two-dimensional infrared hyperspectral imaging. Unidirectional coherence delocalization (coherence prepared in one cavity transfer to another cavity) was observed in frequency and real spaces. This directionality was enabled by dissipation of delocalized photon from high-energy to low-energy modes, described by Lindblad dynamics. Further experiments showed that when coherences were directly prepared across cavities (superpositions between polaritons from different cavities), only energetically nearby polaritons could form coherences that survived the long-range environmental fluctuation. Together with the Lindblad dynamics, this result implied that coherences delocalized through a one-step mechanism where photons transferred from one cavity to another, shedding lights to coherence evolution in natural and artificial quantum systems. This work also demonstrated a way of combining photon and molecular modes to simulate coherence dynamics.
134 - Tao Zhou , Quanhui Liu , Zimo Yang 2020
Objectives.--To estimate the basic reproduction number of the Wuhan novel coronavirus (2019-nCoV). Methods.--Based on the susceptible-exposed-infected-removed (SEIR) compartment model and the assumption that the infectious cases with symptoms occurre d before January 25, 2020 are resulted from free propagation without intervention, we estimate the basic reproduction number of 2019-nCoV according to the reported confirmed cases and suspected cases, as well as the theoretical estimated number of infected cases by other research teams, together with some epidemiological determinants learned from the severe acute respiratory syndrome. Results The basic reproduction number falls between 2.8 to 3.3 by using the real-time reports on the number of 2019-nCoV infected cases from Peoples Daily in China, and falls between 3.2 and 3.9 on the basis of the predicted number of infected cases from colleagues. Conclusions.--The early transmission ability of 2019-nCoV is closed to or slightly higher than SARS. It is a controllable disease with moderate-high transmissibility. Timely and effective control measures are needed to suppress the further transmissions. Notes Added.--Using a newly reported epidemiological determinants for early 2019-nCoV, the estimated basic reproduction number is in the range [2.2,3.0].
Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents $alpha$. By permuting the independently drawn samples from a power-law distribution, we present non-trivial bounds on the me mory strength (1st-order autocorrelation) as a function of $alpha$, which are markedly different from the ordinary $pm 1$ bounds for Gaussian or uniform distributions. When $1 < alpha leq 3$, as $alpha$ grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when $alpha > 3$, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and browsing behavior of Taobao, we find that empirical power-law distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks, and challenge the validity of measures like autocorrelation and assortativity coefficient in heterogeneous systems.
The identification of urban mobility patterns is very important for predicting and controlling spatial events. In this study, we analyzed millions of geographical check-ins crawled from a leading Chinese location-based social networking service (Jiep ang.com), which contains demographic information that facilitates group-specific studies. We determined the distinct mobility patterns of natives and non-natives in all five large cities that we considered. We used a mixed method to assign different algorithms to natives and non-natives, which greatly improved the accuracy of location prediction compared with the basic algorithms. We also propose so-called indigenization coefficients to quantify the extent to which an individual behaves like a native, which depends only on their check-in behavior, rather than requiring demographic information. Surprisingly, the hybrid algorithm weighted using the indigenization coefficients outperformed a mixed algorithm that used additional demographic information, suggesting the advantage of behavioral data in characterizing individual mobility compared with the demographic information. The present location prediction algorithms can find applications in urban planning, traffic forecasting, mobile recommendation, and so on.
Understanding spreading dynamics will benefit society as a whole in better preventing and controlling diseases, as well as facilitating the socially responsible information while depressing destructive rumors. In network-based spreading dynamics, edg es with different weights may play far different roles: a friend from afar usually brings novel stories, and an intimate relationship is highly risky for a flu epidemic. In this article, we propose a weighted susceptible-infected-susceptible model on complex networks, where the weight of an edge is defined by the topological proximity of the two associated nodes. Each infected individual is allowed to select limited number of neighbors to contact, and a tunable parameter is introduced to control the preference to contact through high-weight or low-weight edges. Experimental results on six real networks show that the epidemic prevalence can be largely promoted when strong ties are favored in the spreading process. By comparing with two statistical null models respectively with randomized topology and randomly redistributed weights, we show that the distribution pattern of weights, rather than the topology, mainly contributes to the experimental observations. Further analysis suggests that the weight-weight correlation strongly affects the results: high-weight edges are more significant in keeping high epidemic prevalence when the weight-weight correlation is present.
Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from obs ervations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical big data sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover power-law scaling associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed power-law scaling relations. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.
Facing the threats of infectious diseases, we take various actions to protect ourselves, but few studies considered an evolving system with competing strategies. In view of that, we propose an evolutionary epidemic model coupled with human behaviors, where individuals have three strategies: vaccination, self-protection and laissez faire, and could adjust their strategies according to their neighbors strategies and payoffs at the beginning of each new season of epidemic spreading. We found a counter-intuitive phenomenon analogous to the well-known emph{Braesss Paradox}, namely a better condition may lead to worse performance. Specifically speaking, increasing the successful rate of self-protection does not necessarily reduce the epidemic size or improve the system payoff. This phenomenon is insensitive to the network topologies, and can be well explained by a mean-field approximation. Our study demonstrates an important fact that a better condition for individuals may yield a worse outcome for the society.
Background: Controlling global epidemics in the real world and accelerating information propagation in the artificial world are of great significance, which have activated an upsurge in the studies on networked spreading dynamics. Lots of efforts hav e been made to understand the impacts of macroscopic statistics (e.g., degree distribution and average distance) and mesoscopic structures (e.g., communities and rich clubs) on spreading processes while the microscopic elements are less concerned. In particular, roles of ties are not yet clear to the academic community. Methodology/Principle Findings: Every edges is stamped by its strength that is defined solely based on the local topology. According to a weighted susceptible-infected-susceptible model, the steady-state infected density and spreading speed are respectively optimized by adjusting the relationship between edges strength and spreading ability. Experiments on six real networks show that the infected density is increased when strong ties are favored in the spreading, while the speed is enhanced when weak ties are favored. Significance of these findings is further demonstrated by comparing with a null model. Conclusions/Significance: Experimental results indicate that strong and weak ties play distinguishable roles in spreading dynamics: the former enlarge the infected density while the latter fasten the process. The proposed method provides a quantitative way to reveal the qualitatively different roles of ties, which could find applications in analyzing many networked dynamical processes with multiple performance indices, such as synchronizability and converging time in synchronization and throughput and delivering time in transportation.
Recent empirical observations suggest a heterogeneous nature of human activities. The heavy-tailed inter-event time distribution at population level is well accepted, while whether the individual acts in a heterogeneous way is still under debate. Mot ivated by the impact of temporal heterogeneity of human activities on epidemic spreading, this paper studies the susceptible-infected model on a fully mixed population, where each individual acts in a completely homogeneous way but different individuals have different mean activities. Extensive simulations show that the heterogeneity of activities at population level remarkably affects the speed of spreading, even though each individual behaves regularly. Further more, the spreading speed of this model is more sensitive to the change of system heterogeneity compared with the model consisted of individuals acting with heavy-tailed inter-event time distribution. This work refines our understanding of the impact of heterogeneous human activities on epidemic spreading.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا